Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronentomographie mit 3487 Bildern in 3,5 Sekunden

05.10.2015

Schonende Highspeed-Elektronentomographie setzt neue Maßstäbe für 3D-Aufnahmen aus der Nanowelt

Wissenschaftler des Ernst Ruska-Centrums am Forschungszentrum Jülich haben mit einem Transmissionselektronenmikroskop rund 3500 Bilder in 3,5 Sekunden aufgenommen. Die Bildserie dient als Datenbasis für die tomographische 3D-Rekonstruktion. Bislang waren 10 bis 60 Minuten und die zehnfache Elektronenstrahldosis nötig, um entsprechende Bildserien anzufertigen.


Elektronentomograpische 3D-Rekonstruktion eines Nanoröhrchens (orange) auf einer Kohlenstoff-Trägerschicht (blau).

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)


Die Bildserie dient als Datenbasis für die tomographische 3D-Rekonstruktion.

Copyright: Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)

Die schonende Aufnahmetechnik eignet sich insbesondere zur Untersuchung von biologischen Zellen, Bakterien und Viren. Deren Struktur wurde durch überkritische Elektronenstrahldosen bisher oftmals geschädigt. Zudem ermöglicht es das Verfahren, dynamische Prozesse wie chemische Reaktionen oder elektronische Schaltvorgänge in Echtzeit und 3D mit Sub-Nanometer-Präzision sichtbar zu machen. Die Ergebnisse wurden in der Fachzeitschrift "Scientific Reports" veröffentlicht.

Die Elektronentomographie ist mit der Computertomographie verwandt, die aus der Forschung und dem klinischen Alltag mittlerweile nicht mehr wegzudenken ist. Elektronentomographische Abbildungen sind allerdings deutlich trennschärfer als diejenigen röntgenstrahlbasierter Verfahren.

Das Auflösungsvermögen der Elektronentomographie ist das mit Abstand beste, das heute technisch möglich ist. Die Methode eignet sich daher auf einzigartige Weise, um etwa Viren und Bakterien nach Ansatzpunkten für medizinische Wirkstoffe abzusuchen oder neuartige Nanomaterialien für unterschiedliche Anwendungsgebiete, von der Nanoelektronik bis hin zur Energietechnik, zu erforschen.

"Die Beschleunigung und Senkung der Strahlungsdosis eröffnet neue Perspektiven, speziell für die Lebenswissenschaften und für die Erforschung weicher Materie", schwärmt Prof. Rafal Dunin-Borkowski. Bei dem Verfahren nimmt ein Transmissionselektronenmikroskop in rascher Folge Bilder aus unterschiedlichen Winkeln von der Probe auf, die meist weniger als einen Mikrometer dick ist.

"Die einzelnen Bilder zeigen keinen Querschnitt durch die Probe. Stattdessen überlagern sich die Informationen aus unterschiedlichen Schichten ähnlich wie bei einem Röntgenbild und werden anschließend gemeinsam auf eine Ebene projiziert", erklärt der Kodirektor des Ernst Ruska-Centrums sowie Direktor am Jülicher Peter Grünberg Institut (PGI-5). Daher sind Algorithmen notwendig, mit denen sich aus einer Bildserie am Computer die dreidimensionale Darstellung berechnen lässt.

Die erzielbare Auflösung wird dabei durch die präparatschädigende Wirkung des Elektronenstrahls beschränkt. Insbesondere weiche, biologische Proben „vertragen“ nur eine begrenzte Anzahl von Bildern. Ihre empfindlichen Strukturen, beispielsweise Proteinstrukturen, werden durch hochenergetische Elektronen schnell zerstört. Um die Elektronenstrahldosis zu verringern, haben die Forscher des Ernst Ruska-Centrums ihr Elektronenmikroskop mit einem neuartigen Detektor ausgestattet. Die verwendete Single Electron Detection-Kamera kann einfallende Elektronen direkt erfassen, ohne sie vorab in Photonen, also Licht, umwandeln zu müssen – wie es bislang üblich ist.

"Die jüngste Generation von Detektorchips besitzt eine sehr hohe Empfindlichkeit, was bedeutet, dass man für die gleiche Aufnahmequalität mit einer zwei- bis dreimal kleineren Elektronenstrahldosis auskommt", erläutert Dr. Vadim Migunov, tätig am Ernst Ruska-Centrum und dem Jülicher Peter Grünberg Institut. Kollegen von ihm am Jülicher Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-2) haben die Elektronik des Chips mitentwickelt. Sie sorgt dafür, dass sich die Daten deutlich schneller auslesen und damit extrem schnelle Aufnahmeraten erzielen lassen.

Erste Tests mit Nanoröhrchen und Katalysatoren

Zur Überprüfung des verbesserten Verfahrens hat Vadim Migunov gemeinsam mit seinen Kollegen vom Ernst Ruska-Centrum ein anorganisches Nanoröhrchen aus Lanthaniden untersucht. Derartige Strukturen werden aktuell mit großem Interesse erforscht, da sie sich möglicherweise für die Stromgewinnung aus Abwärme sowie für neuartige Lichtquellen und Katalysatoren eignen. "Durch die Aufnahmerate von rund 1000 Bildern pro Sekunde wird es beispielsweise erstmals möglich, mittels Elektronentomographie schnelle Prozesse in 3D auf der Nanoskala und in Echtzeit zu beobachten – beispielsweise chemische Reaktionen, an denen Katalysatoren beteiligt sind, Kristallwachstumsprozesse oder Phasenzustandswechsel", erklärt Vadim Migunov.

Untersuchungen mit besserer zeitlicher und räumlicher Auflösung könnten beispielsweise helfen zu erklären, wie es zum Funktionsverlust von Nanokatalysatoren kommt. Derartige Nanopartikel lassen sich unter anderem zur Gewinnung von Wasserstoff oder zur Abtrennung schädlicher Klimagase einsetzen. Ihr Wirkungsgrad hängt maßgeblich davon ab, wie sich die Atome an Oberflächen anordnen, an denen sich die chemischen Reaktionen abspielen.

Darüber hinaus bringt das neue Verfahren weitere Vorteile mit sich. Nur wenige Sekunden Rechenzeit sind nötig, um die 3D-Struktur am Rechner zu rekonstruieren. Die zeitliche Verzögerung fällt also sehr gering aus, was es Wissenschaftlern ermöglicht, laufende Experimente praktisch "live" in 3D mitzuverfolgen.

Movie: Electron Tomography with 3487 Images in 3.5 Seconds
noPlaybackVideo

DownloadVideo

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)

Originalpublikation

Rapid low dose electron tomography using direct electron detection camera. V. Migunov, H. Ryll, X. Zhuge, M. Simson, L. Strüder, K. Batenburg, L. Houben, R. Dunin-Borkowski. Scientific Reports (published 5 October 2015), DOI: 10.1038/srep1451.6. http://www.nature.com/articles/srep14516

Weiterführende Informationen

Ernst Ruska-Centrum für Elektronenmikroskopie und Elektronenspektroskopie (ER-C)

Peter Grünberg Institut, Mikrostrukturforschung

Kontakt:

Dr. Vadim Migunov
Ernst Ruska-Centrum (ER-C)
Peter Grünberg Institut, Mikrostrukturforschung (PGI-5)
Forschungszentrums Jülich
Tel. +49 2461 61-9478
v.migunov@fz-juelich.de

Prof. Dr. Rafal Dunin-Borkowski
Direktor am Ernst Ruska-Centrum (ER-C)
Peter Grünberg Institut, Mikrostrukturforschung (PGI-5)
Forschungszentrums Jülich
Tel. +49 2461 61-9297
r.dunin-borkowski@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Angela Wenzik
Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. +49 2461 61-6048
a.wenzik@fz-juelich.de

Tobias Schlößer | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Fraunhofer IGB wirkt bei Gestaltung des europäischen Fahrplans für Organ-on-a-Chip-Technologie mit
14.11.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Entwicklung modernster Navigationssysteme für die Gefäßchirurgie
06.11.2017 | Universität zu Lübeck

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte