Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronentomographie mit 3487 Bildern in 3,5 Sekunden

05.10.2015

Schonende Highspeed-Elektronentomographie setzt neue Maßstäbe für 3D-Aufnahmen aus der Nanowelt

Wissenschaftler des Ernst Ruska-Centrums am Forschungszentrum Jülich haben mit einem Transmissionselektronenmikroskop rund 3500 Bilder in 3,5 Sekunden aufgenommen. Die Bildserie dient als Datenbasis für die tomographische 3D-Rekonstruktion. Bislang waren 10 bis 60 Minuten und die zehnfache Elektronenstrahldosis nötig, um entsprechende Bildserien anzufertigen.


Elektronentomograpische 3D-Rekonstruktion eines Nanoröhrchens (orange) auf einer Kohlenstoff-Trägerschicht (blau).

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)


Die Bildserie dient als Datenbasis für die tomographische 3D-Rekonstruktion.

Copyright: Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)

Die schonende Aufnahmetechnik eignet sich insbesondere zur Untersuchung von biologischen Zellen, Bakterien und Viren. Deren Struktur wurde durch überkritische Elektronenstrahldosen bisher oftmals geschädigt. Zudem ermöglicht es das Verfahren, dynamische Prozesse wie chemische Reaktionen oder elektronische Schaltvorgänge in Echtzeit und 3D mit Sub-Nanometer-Präzision sichtbar zu machen. Die Ergebnisse wurden in der Fachzeitschrift "Scientific Reports" veröffentlicht.

Die Elektronentomographie ist mit der Computertomographie verwandt, die aus der Forschung und dem klinischen Alltag mittlerweile nicht mehr wegzudenken ist. Elektronentomographische Abbildungen sind allerdings deutlich trennschärfer als diejenigen röntgenstrahlbasierter Verfahren.

Das Auflösungsvermögen der Elektronentomographie ist das mit Abstand beste, das heute technisch möglich ist. Die Methode eignet sich daher auf einzigartige Weise, um etwa Viren und Bakterien nach Ansatzpunkten für medizinische Wirkstoffe abzusuchen oder neuartige Nanomaterialien für unterschiedliche Anwendungsgebiete, von der Nanoelektronik bis hin zur Energietechnik, zu erforschen.

"Die Beschleunigung und Senkung der Strahlungsdosis eröffnet neue Perspektiven, speziell für die Lebenswissenschaften und für die Erforschung weicher Materie", schwärmt Prof. Rafal Dunin-Borkowski. Bei dem Verfahren nimmt ein Transmissionselektronenmikroskop in rascher Folge Bilder aus unterschiedlichen Winkeln von der Probe auf, die meist weniger als einen Mikrometer dick ist.

"Die einzelnen Bilder zeigen keinen Querschnitt durch die Probe. Stattdessen überlagern sich die Informationen aus unterschiedlichen Schichten ähnlich wie bei einem Röntgenbild und werden anschließend gemeinsam auf eine Ebene projiziert", erklärt der Kodirektor des Ernst Ruska-Centrums sowie Direktor am Jülicher Peter Grünberg Institut (PGI-5). Daher sind Algorithmen notwendig, mit denen sich aus einer Bildserie am Computer die dreidimensionale Darstellung berechnen lässt.

Die erzielbare Auflösung wird dabei durch die präparatschädigende Wirkung des Elektronenstrahls beschränkt. Insbesondere weiche, biologische Proben „vertragen“ nur eine begrenzte Anzahl von Bildern. Ihre empfindlichen Strukturen, beispielsweise Proteinstrukturen, werden durch hochenergetische Elektronen schnell zerstört. Um die Elektronenstrahldosis zu verringern, haben die Forscher des Ernst Ruska-Centrums ihr Elektronenmikroskop mit einem neuartigen Detektor ausgestattet. Die verwendete Single Electron Detection-Kamera kann einfallende Elektronen direkt erfassen, ohne sie vorab in Photonen, also Licht, umwandeln zu müssen – wie es bislang üblich ist.

"Die jüngste Generation von Detektorchips besitzt eine sehr hohe Empfindlichkeit, was bedeutet, dass man für die gleiche Aufnahmequalität mit einer zwei- bis dreimal kleineren Elektronenstrahldosis auskommt", erläutert Dr. Vadim Migunov, tätig am Ernst Ruska-Centrum und dem Jülicher Peter Grünberg Institut. Kollegen von ihm am Jülicher Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-2) haben die Elektronik des Chips mitentwickelt. Sie sorgt dafür, dass sich die Daten deutlich schneller auslesen und damit extrem schnelle Aufnahmeraten erzielen lassen.

Erste Tests mit Nanoröhrchen und Katalysatoren

Zur Überprüfung des verbesserten Verfahrens hat Vadim Migunov gemeinsam mit seinen Kollegen vom Ernst Ruska-Centrum ein anorganisches Nanoröhrchen aus Lanthaniden untersucht. Derartige Strukturen werden aktuell mit großem Interesse erforscht, da sie sich möglicherweise für die Stromgewinnung aus Abwärme sowie für neuartige Lichtquellen und Katalysatoren eignen. "Durch die Aufnahmerate von rund 1000 Bildern pro Sekunde wird es beispielsweise erstmals möglich, mittels Elektronentomographie schnelle Prozesse in 3D auf der Nanoskala und in Echtzeit zu beobachten – beispielsweise chemische Reaktionen, an denen Katalysatoren beteiligt sind, Kristallwachstumsprozesse oder Phasenzustandswechsel", erklärt Vadim Migunov.

Untersuchungen mit besserer zeitlicher und räumlicher Auflösung könnten beispielsweise helfen zu erklären, wie es zum Funktionsverlust von Nanokatalysatoren kommt. Derartige Nanopartikel lassen sich unter anderem zur Gewinnung von Wasserstoff oder zur Abtrennung schädlicher Klimagase einsetzen. Ihr Wirkungsgrad hängt maßgeblich davon ab, wie sich die Atome an Oberflächen anordnen, an denen sich die chemischen Reaktionen abspielen.

Darüber hinaus bringt das neue Verfahren weitere Vorteile mit sich. Nur wenige Sekunden Rechenzeit sind nötig, um die 3D-Struktur am Rechner zu rekonstruieren. Die zeitliche Verzögerung fällt also sehr gering aus, was es Wissenschaftlern ermöglicht, laufende Experimente praktisch "live" in 3D mitzuverfolgen.

Movie: Electron Tomography with 3487 Images in 3.5 Seconds
noPlaybackVideo

DownloadVideo

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)

Originalpublikation

Rapid low dose electron tomography using direct electron detection camera. V. Migunov, H. Ryll, X. Zhuge, M. Simson, L. Strüder, K. Batenburg, L. Houben, R. Dunin-Borkowski. Scientific Reports (published 5 October 2015), DOI: 10.1038/srep1451.6. http://www.nature.com/articles/srep14516

Weiterführende Informationen

Ernst Ruska-Centrum für Elektronenmikroskopie und Elektronenspektroskopie (ER-C)

Peter Grünberg Institut, Mikrostrukturforschung

Kontakt:

Dr. Vadim Migunov
Ernst Ruska-Centrum (ER-C)
Peter Grünberg Institut, Mikrostrukturforschung (PGI-5)
Forschungszentrums Jülich
Tel. +49 2461 61-9478
v.migunov@fz-juelich.de

Prof. Dr. Rafal Dunin-Borkowski
Direktor am Ernst Ruska-Centrum (ER-C)
Peter Grünberg Institut, Mikrostrukturforschung (PGI-5)
Forschungszentrums Jülich
Tel. +49 2461 61-9297
r.dunin-borkowski@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Angela Wenzik
Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. +49 2461 61-6048
a.wenzik@fz-juelich.de

Tobias Schlößer | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Bypass – Lebensbrücke für das Herz; keine Angst vor der Herz-Operation
21.09.2017 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften