Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein anderer Blickwinkel ins Gehirn

18.05.2015

Tübinger Neurowissenschaftler legen wichtige Grundlagen für nichtinvasive Bildgebung des menschlichen Gehirns

Tübinger Neurowissenschaftlern ist ein wesentlicher Schritt bei der nichtinvasiven Untersuchung des menschlichen Gehirns durch die funktionelle Magnetresonanztomografie (fMRI, functional magnetic resonance imaging) gelungen. Das bildgebende Verfahren wird in der Forschung genutzt, um Interaktionen zwischen verschiedenen Gehirnregionen zu untersuchen.

Allerdings indirekt: fMRI erfasst nicht die neuronale Aktivität, sondern erkennt besonders aktive Gehirnareale anhand ihrer Durchblutung. Dr. Markus Siegel und seine Arbeitsgruppe (Werner Reichardt Centrum für Integrative Neurowissenschaften – CIN / MEG Zentrum der Universität Tübingen) zeigen in einer aktuellen Studie, dass die per fMRI gemessenen Interaktionen zwischen Hirnregionen tatsächlich mit korrelierter Nervenzellaktivität zusammenhängen ‒ und welche Art von Aktivität dies ist.

Die Methode wird so noch attraktiver für die neurowissenschaftliche Forschung. Die Ergebnisse werden am Montag, 18. Mai 2015, im renommierten Fachmagazin „Current Biology“ veröffentlicht.

Das menschliche Gehirn besteht aus etwa 100 Milliarden Neuronen, die in Zentren gebündelt sind. Diese Areale haben unterschiedliche Aufgaben, kommunizieren aber unentwegt miteinander. Diese Interaktionen zwischen Hirnregionen sind die Grundlage unseres alltäglichen Denkens und Handelns. Störungen dieser Interaktionen sind dagegen oft die Grundlage neurologischer Erkrankungen, etwa der Multiplen Sklerose (MS).

Um diese Interaktionen zwischen Hirnregionen nichtinvasiv – also von außen, ohne Öffnung des Schädels – zu untersuchen, setzt die neurowissenschaftliche Forschung seit Jahren fMRI ein. fMRI misst Blutfluss und Sauerstoffgehalt des Blutes im Gehirn. Weil Nervenzellen viel Energie verbrauchen – unser Gehirn beansprucht etwa 25 Prozent der täglich aufgenommenen Kalorien –, werden aktive Hirnareale besonders stark durchblutet.

So lässt fMRI Rückschlüsse darauf zu, welche Areale des Gehirns jeweils gerade aktiv sind und miteinander kommunizieren. Da aber eben nicht direkt neuronale Prozesse, sondern Blutfluss und Sauerstoffsättigung beobachtet werden, ist noch unzureichend verstanden, ob und welche Art von neuronalen Interaktionen zwischen Hirnregionen das fMRI tatsächlich widerspiegelt.

Um diese Lücke zu schließen, glichen Dr. Siegel und sein Team die fMRI-Messungen von Probanden mit deren Magnetenzephalographie (MEG)-Messungen ab. Im Gegensatz zum fMRI misst das MEG direkt die Nervenzellaktivität im Gehirn – es registriert die durch diese Aktivität verursachten, sehr kleinen Magnetfelder.

MEG hat eine schlechtere räumliche Auflösung als fMRI, aber die sehr hohe zeitliche Präzision ermöglicht, anders als beim fMRI, die Unterscheidung verschiedener Hirnrhythmen – das sind schnelle periodische Veränderungen der Gehirnaktivität. Die Tübinger Universität ist eine der wenigen Einrichtungen in Deutschland, die über eine MEG-Apparatur verfügt.

Markus Siegel und sein Team verglichen die per fMRI und MEG gemessenen Interaktionen zwischen 450 einzelnen Punkten im Gehirn. Die Wissenschaftler werteten so ca. 100.000 Einzeldaten aus. Der Aufwand hat sich gelohnt: Ihnen gelang der Nachweis, dass Nervenzellaktivität und die per fMRI gemessenen Interaktionen unmittelbar zusammenhängen.

Darüberhinaus konnten sie zeigen, dass dieser Zusammenhang nicht etwa im ganzen Gehirn gleich ist: Das fMRI zeigt für verschiedene Paare von Hirnregionen die Interaktion unterschiedlicher Hirnrhythmen. Viele der vom fMRI gelieferten Informationen sind damit komplementär zu denen, die das MEG bereitstellen kann.

Die Befunde liefern eine wichtige Grundlage für den Einsatz des fMRI in der Neurowissenschaft. Darüber hinaus zeigen diese Ergebnisse den Nutzen, den der gemeinsame Einsatz von fMRI mit seiner hervorragenden räumlichen Auflösung und MEG oder EEG mit ihrer hohen zeitlichen Auflösung bringen können. Die Kombination der Verfahren erscheint damit mittelfristig auch als Methode zur Diagnostik oder zur Vorbereitung von Behandlungen im klinischen Alltag immer realistischer. Der neue Blickwinkel lässt wesentlich feinere Bilder des Geschehens im gesunden und erkrankten menschlichen Gehirn erwarten.

Publikation:
Joerg F. Hipp, Markus Siegel: BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation. Current Biology (2015), 18. Mai 2015 (online-Publikation)
http://dx.doi.org/10.1016/j.cub.2015.03.049

Pressekontakt CIN:
Dr. Paul Töbelmann, Wissenschaftskommunikation
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Otfried-Müller-Str. 25 ∙ 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de

Weitere Informationen:

http://www.cin.uni-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken
28.03.2017 | Technische Universität Braunschweig

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit