Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Wissenschaftler verfolgen Potonenstrahl erstmals schnell und unverfälscht im Patienten

01.03.2016

Einem Dresdner Forscherteam ist es erstmalig gelungen, die Reichweite von Protonen während der Bestrahlung von Patienten zu bestimmen. Bei dem Verfahren setzten die Experten der Medizinischen Fakultät der TU Dresden, des OncoRay Zentrums Dresden, des HZDR und der iba – Unternehmensgruppe für Ion Beam Applications – eine neu entwickelte Schlitzkamera ein. Mittels der prompten Gammastrahlung ist es damit möglich, die Reichweite von Protonen nicht nur im Labor zu bestimmen, sondern unter klinischen Bedingungen. Die anhand des neu entwickelten Verifikationssystems erzielten Ergebnisse wurden im führenden europäischen Strahlentherapie-Journal „Radiotherapy and Oncology“ veröffentlicht.

„Heute sind wir an einem Punkt in der Protonentherapie angekommen, dass wir sagen können, viele Tumore, die bislang schlecht chirurgisch behandelt werden konnten, können mittels einer wirkungsvollen Bestrahlung gut in Schach gehalten werden“, sagt Prof. Michael Baumann, Direktor der Klinik für Strahlentherapie und Radioonkologie am Universitätsklinikum Carl Gustav Carus und des gemeinsam mit dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) getragenen OncoRay Zentrums für Krebsforschung, der gemeinsam mit seinem Ärzteteam seit einem Jahr in Dresden täglich Patienten mittels Protonentherapie behandelt und beachtliche Erfolge erzielen konnte.


Die OncoRay-Wissenschaftler Dr. Guntram Pausch (links) und Dr. Christian Richter vor der Schlitzkamera

Foto: Medizinische Fakultät der TU Dresden / Stephan Wiegand

„Wir als Ärzte hatten nur ein zunächst kleines, auf den zweiten Blick aber doch etwas größeres Problem“, sagt Prof. Baumann, weiter, „denn wir konnten nicht auf den Millimeter nachverfolgen, bis zu welcher Tiefe der Protonenstrahl tatsächlich in den Patienten eindringt und seine Energie entfaltet.“

Bislang lassen die Wissenschaftler bei der dreidimensionalen Dosisberechnung immer einen gewissen „Sicherheitsabstand“, wodurch mehr gesundes Gewebe bestrahlt wird als nötig ist. In aller Regel ist der zwischen fünf und zehn Millimeter, sowohl vor als auch hinter dem Tumor.

„Das klingt im ersten Moment nicht sonderlich viel, aber wenn man kurz abstrahiert und sich mal vor Augen führt, dass der Tumor vielleicht die Form einer Orange hat, dann sind die Volumen von Schale und Fruchtfleisch durchaus vergleichbar“, sagt Dr. Christian Richter, der eine Forschungsgruppe leitet, die sich in den letzten Jahren intensiv damit beschäftigte, die Präzision der Protonenbestrahlung zu verbessern.

„Unsere größte Herausforderung war, dass die Protonen nicht wieder aus dem Körper austreten. Sie entfalten ihre gesamte Energie an einer fest definierten Stelle und unterscheiden sich daher beispielsweise von bekannten Röntgenstrahlen. In der Konsequenz hieß das für uns, wir konnten kein direktes Messverfahren entwickeln.“

Die Idee war also ein indirekter Lösungsansatz. Die Wissenschaftler um Dr. Christian Richter machten sich eine Gesetzmäßigkeit zunutze: Bei einer Bestrahlung mit Protonen entsteht im Patienten Gammastrahlung, welche aus dem Patient nach außen dringt. Die Gammastrahlung wird prompt, ohne zeitlichen Verzug freigesetzt und verteilt sich in alle Richtungen. Mittels einer Schlitzkamera wird nur der Teil eingefangen, aus dem sich auch die „Eindringtiefe“ der Protonen schlussfolgern lässt.

Die Aufgabe bestand darin, dieses „Nebenprodukt“ mit einem geeigneten Detektor zu messen. Dazu haben die Dresdner Wissenschaftler ihr Knowhow in einen einzigartigen Forschungsverbund eingebracht. So kam es zu einer Kooperation von Experten der Medizinischen Fakultät der TU Dresden, dem OncoRay Zentrum Dresden, dem HZDR und der iba – Unternehmensgruppe für Ion Beam Applications, einem der weltweit führenden Hersteller für Protonenstrahlanlagen. In dieser effektiven Konstellation konnte in den letzten Monaten ein von iba entwickelter Prototyp einer sogenannten Prompt-Gamma-Kamera in vielen präklinischen Experimenten getestet werden.

„Mittlerweile können wir sagen, dass wir die Kamera so gut einstellen und kalibrieren können, dass sie auf die Signale des Ionenstrahls empfindlich genug reagiert, und dass wir damit eine international beachtete Lösung gefunden haben, um die Position eines Protonenstrahls im Körper des Patienten zu messen“, erklärt Dr. Guntram Pausch, der die Tests wissenschaftlich begleitet hat.

Um die Gammastrahlung sichtbar werden zu lassen, bedienen sich die Dresdner Forscher eines schon länger bekannten Phänomens – dabei trifft die Gammastrahlung auf einen auf optische Signale reagierenden Hintergrund. Tausende von Lichtblitzen müssen in der Folge ausgewertet werden, die in ihrer Abstufung ein Bild liefern und mit der zuvor herkömmlich berechneten Protonenstrahldosis ins Verhältnis gesetzt werden können.

Eine regelrechte Fleißaufgabe, der sich das Wissenschaftlerteam stellt und aufgrund von vielen Messungen einen Algorithmus gefunden hat, mit dem sich tatsächlich der Verlauf des Protonenstrahls beschreiben lässt. „Diese Schlitzkamera ist so gestaltet, dass sie sich sehr schnell neben dem Patienten genau positionieren lässt“, resümiert Christian Richter, der mit seinem Team daran gearbeitet hat, den Prototypen der Prompt Gamma Schlitzkamera wirklich klinisch einsetzen zu können.

Weltweit arbeiten mehrere Teams daran, wie sich mit der prompten Gammastrahlung die Reichweite von Protonen verifizieren lässt. In Dresden ist es aber dem bereits beschriebenen Forschungskonsortium mit ihrer Schlitzkamera erstmalig gelungen ein Verifikationssystem zu entwickeln, dass wirklich unter klinischen Bedingungen – am Patienten – eingesetzt werden konnte und nicht nur im Labor, unter idealisierten Bedingungen funktioniert.

Eine der ganz großen Ansprüche war es, dass das Messverfahren recht störunempfindlich und verhältnismäßig robust ist, damit der Einsatz in der Praxis nicht von mehreren möglichen Fehlerquellen beeinflusst wird. Mit der jetzt entwickelten und erstmalig am Patienten eingesetzten Prompt-Gamma-Schlitzkamera steht den Strahlenmedizinern ein Instrument zur Verfügung, mit dem sich der Protonenstrahl im Organismus genau nachverfolgen lässt. Weltweit sorgte diese erste klinische Anwendung in Dresden für Beachtung und einer eingehenden Publikation im führenden europäischen Strahlentherapie-Journal.

Damit ist in Dresden ein neuer Grundstein gelegt worden, auf dem die Protonentherapie in Zukunft weiter verbessert werden kann, unter anderem auch für „Risikopatienten“, die bislang nicht von dieser schonenden und relativ nebenwirkungsarmen Therapie profitieren konnten. Beispielsweise dann, wenn der Tumor sehr nah an strahlensensiblen gesunden Strukturen angrenzt, z.B. in hochsensiblen Hirnregionen.

Publikation
Richter C, Pausch G, Barczyk S, Priegnitz M, Keitz I, Thiele J, Smeets J, Vander Stappen F, Bombelli L, Fiorini C, Hotoiu L, Perali I, Prieels D, Enghardt W, Baumann M.: First clinical application of a prompt gamma based in vivo proton range verification system. Radiotherapy and Oncology 2016 (in press). doi:10.1016/j.radonc.2016.01.004

Kontakt
Universitätsklinikum Carl Gustav Carus Dresden
Medizinische Fakultät der Technischen Universität Dresden
Klinik und Poliklinik für Strahlentherapie und Radioonkologie
OncoRay – Zentrum für Medizinische Strahlenforschung in der Onkologie
Direktor: Prof. Michael Baumann
Tel.: 0351 458 5292
E-Mail: Michael.Baumann@uniklinikum-dresden.de

Weitere Informationen:

http://www.krebscentrum.de
http://www.oncoray.de

Konrad Kästner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uniklinikum-dresden.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzultraschall: Die dritte Dimension
21.03.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

nachricht «Instrumentenflug» zum Innenohr
16.03.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie