Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Clevere Software für schonende Strahlentherapie - Am 1. April startet das Forschungsprojekt SPARTA

03.04.2013
Röntgenstrahlen dienen nicht nur zum Durchleuchten, etwa um Knochenbrüche oder innere Erkrankungen zu diagnostizieren. In Form von hochenergetischer Photonenstrahlung lässt sich auch Krebs behandeln, indem man den Tumor gezielt einer starken Strahlendosis aussetzt.
Diese Strahlentherapie gehört mittlerweile zu den wichtigsten Behandlungsmethoden gegen Krebs – etwa jeder zweite Tumorpatient wird heute mit Photonen- oder Teilchenstrahlen behandelt. Um die Methode zu verbessern, startet am 1. April 2013 mit SPARTA ein neues, interdisziplinäres Forschungsprojekt. Das Ziel: Unterstützt von modernster Softwaretechnologie sollen Tumoren effektiver und patientenschonender bestrahlt werden als es heute möglich ist.

Wollen Mediziner einen Tumor behandeln, der nahe an empfindlichen Gewebestrukturen wie Nerven oder Organen liegt, verwenden sie ein besonderes Verfahren, die „intensitätsmodulierte“ Strahlentherapie. Bei ihr wird das Geschwür nicht wenigen, relativ breiten und starken Photonenstrahlen ausgesetzt, sondern von mehreren, aus verschiedenen Richtungen kommenden und individuell dosierten Teilstrahlen in die Zange genommen. Da sich diese Strahlen gezielt im Tumor überlagern, entfalten sie erst dort ihre maximale Dosis. Das umliegende gesunde Gewebe wird nur wenig belastet – so der Idealfall.
In der Praxis jedoch erfährt diese Methode manche Einschränkung. Das liegt unter anderem daran, dass es mit einer einzigen Bestrahlung meist nicht getan ist. Stattdessen müssen die Patienten im Laufe von Wochen ca. 30mal behandelt werden. In dieser Zeit aber kann sich der Körper des Erkrankten verändern, etwa weil der Tumor seine Größe verändert oder das Patientengewicht ab- oder zunimmt. Dadurch verändert sich dann auch die Position des Tumors im Körper – und damit das Ziel der Strahlung. Das bedeutet ein Risiko, den Tumor mit den Strahlen teilweise zu verfehlen und stattdessen verstärkt gesundes Gewebe zu treffen.

Hinzu kommt, speziell bei Tumoren im Brust- und Bauchraum, ein weiteres Problem: Da der Patient während der Bestrahlung atmet, bewegt sich zwangsläufig auch der Tumor. Um das Geschwür dennoch zu treffen, muss der Arzt das Zielgebiet der Strahlen relativ groß wählen – und schädigt dadurch mehr gesundes Gewebe als mindestens nötig.

An dieser Stelle setzt SPARTA an: In dem Forschungsprojekt entwickeln Wissenschaftler aus zehn Einrichtungen neuartige adaptive und flexibel erweiterbare Softwaresysteme, die die Mediziner bei der Planung und Durchführung der Strahlentherapie unterstützen sollen. Die übergeordnete Zielsetzung von SPARTA ist, die Strahlentherapie dadurch effizienter, sicherer und gleichzeitig wirkungsvoller zu machen. Die Projektziele umfassen unter anderem:

• Die Variationen genau erfassen
Computergestützte Bildgebungs- und Sensorsysteme sollen präzise messen, ob und wie sich die Anatomie des Patienten im Laufe der Behandlungswochen und auch während der Bestrahlung verändert. Sie sollen seine Position auf der Bestrahlungsliege feststellen und seine Bewegungen überwachen, etwa die Atmung. Dieses genaue Erfassen der individuellen Variationen bildet die Voraussetzung, die Strahlentherapie besser an den Patienten anpassen zu können.
• Die Dosis präzise abschätzen
Eine Software soll die Variationen, die zwischen oder während den Behandlungen auftreten, mit dem ursprünglichen Bestrahlungsplan abgleichen. Dadurch kann der Arzt herausfinden, ob die Strahlung tatsächlich dort angekommen ist, wo es laut Planung vorgesehen war. Zudem soll das Programm die Gesamtdosis, die den Tumor nach einer bestimmten Zahl von Behandlungen erreicht hat, zuverlässig abschätzen. Damit ließe sich besser als bislang beurteilen, ob der Tumor ausreichend bestrahlt wurde.
• Den Bestrahlungsplan intelligent anpassen
Die Experten entwickeln ein Programm, das sich den gemessenen Veränderungen sensibel anpasst oder sogar die zu erwartenden Variationen zwischen und während den Behandlungen quasi voraussagt – und zwar individuell für jeden Patienten: Wie ausgeprägt und regelmäßig etwa sind die Atembewegungen auf der Liege und wie wirken diese sich auf die Bewegung der Zielregion aus? Diese Informationen sollen bereits vor Beginn jeder einzelnen Behandlung in den Bestrahlungsplan einfließen und ihn so genauer machen. Außerdem soll die Planung „adaptiv“ werden, soll also im Laufe der Behandlung einfach und flexibel angepasst werden können, etwa wenn sich der Tumor wegen Gewichtsabnahme oder leicht unterschiedlicher Körperhaltung verschoben hat. Damit ließe sich besser als bisher sicherstellen, dass die Dosis wie geplant auch tatsächlich im Tumor ankommt und nur ein Bruchteil das umliegende Gewebe schädigt.
• Den Tumor im Detail analysieren
Um die gesamte Bestrahlung präzise zu planen, wird der Patient schon heute mit dem Computertomographen durchleuchtet. Damit kennen die Ärzte zwar die Position des Tumors, nicht aber seine Struktur: Welche Teile des Geschwürs sind aktiv, welche sind bereits abgestorben? Für die Behandlung wäre das eine wichtige Information, denn nur die aktiven Regionen eines Tumors müssen bestrahlt werden, nicht die inaktiven. Auskunft darüber können spezielle Verfahren liefern, insbesondere die funktionelle Magnetresonanztomograpie (MRT) oder die Positronen-Emissions-Tomographie (PET). Im Rahmen von SPARTA wollen die Forscher systematisch untersuchen, welchen Nutzen diese Verfahren für eine präzisere, multimodale Bestrahlungsplanung haben können.

Über das SPARTA-Projekt:
SPARTA steht für „Softwareplattform für die Adaptive Multimodale Radio- und Partikel-Therapie mit Autarker Erweiterbarkeit“. Das Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) mit einer Summe von knapp acht Millionen Euro gefördert. Es beginnt am 1. April 2013 und hat eine Laufzeit von drei Jahren. Das Konsortium umfasst zehn Partner, darunter Forschungsinstitute, Medizintechnik-Unternehmen und Universitätskliniken.
Projektpartner:
• Fraunhofer MEVIS, Institut für Bildgestützte Medizin, Bremen und Lübeck (Koordinator)
• Deutsches Krebsforschungszentrum DKFZ, Heidelberg
• Fraunhofer ITWM, Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern
• Universitätsklinikum Heidelberg
• Klinikum der Ludwig-Maximilians-Universität München
• Technische Universität Dresden, Medizinische Fakultät
• Heidelberger Ionenstrahl Therapiezentrum Betriebs-GmbH, Heidelberg
• Siemens AG, Forchheim
• MeVis Medical Solutions AG, Bremen
• Precisis AG, Heidelberg

Bianka Hofmann | Fraunhofer-Institut
Weitere Informationen:
http://www.mevis.fraunhofer.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Vollautomatisierter Virusnachweis in der Blutspende
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Präzisionsbestrahlung bei Prostatakrebs: HYPOSTAT-Studie wird ausgeweitet
11.12.2017 | Universitätsklinikum Schleswig-Holstein

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik