Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Forscher entwickeln Sehhilfen für Blinde

09.08.2013
Hoffnung für Blinde - auch wenn der Weg zum visuellen Wahrnehmen noch weit ist: Neurowissenschaftler und Elektrotechniker der Universität Bremen starten jetzt mit Mitteln aus der Exzellenzinitiative und der Deutschen Forschungsgemeinschaft (DFG) zwei Projekte, die Blinden helfen sollen, visuelle Eindrücke zu bekommen. In den Vorhaben „I-See – das künstliche Auge“ und „InAuKa“ geht es darum, wie elektrische Signale direkt ins Gehirn eingespeist und dort verarbeitet werden.

Um eines Tages eine Sehprothese zu entwickeln, müssen das Gehirn und dessen Informationsverarbeitung besser verstanden werden. Neue Technologien für medizinische Anwendungen lassen sich nur auf Basis von in Tierversuchen gewonnenen Erkenntnissen entwickeln.

„Im Rahmen der Projekte beginnen wir jetzt, an konkreten Systemen für Patienten zu arbeiten – auch wenn das beim künstlichen Auge sicher noch mindestens zehn Jahre dauern wird“, sagt Professor Andreas Kreiter, Wissenschaftler am Zentrum für Kognitionswissenschaften (ZKW) der Universität Bremen zur zeitlichen Perspektive der Forschungsarbeiten. Insgesamt stehen für die beiden interdisziplinären Vorhaben 1,3 Millionen Euro zur Verfügung.

Das Gehirn gezielt stimulieren

Im menschlichen Gehirn werden Informationen mit der Hilfe von elektrischen Impulsen übertragen. Auf diese Weise werden Seheindrücke von den Augen zu der Sehrinde des Gehirns gesendet. Hieraus entsteht dann die visuelle Wahrnehmung der Umgebung. Ist die Verarbeitung oder das Weiterleiten dieser Signale durch eine Krankheit oder Verletzung gestört, kommt es für die betroffene Person zu Problemen wie Blindheit. Dadurch wird die Lebensqualität der betroffenen Menschen stark eingeschränkt.

Ein Behandlungsansatz ist, künstlich erzeugte elektrische Signale in das Gehirn einzuspeisen, um so den geschädigten Teil der Sinnesorgane oder des Gehirns zu überbrücken und in seiner Funktion zu ersetzen. Die Einführung von Signalen durch direkte elektrische Stimulation der Nervenzellen im Gehirn ist aber extrem schwierig. Ein Hauptproblem ist, eine „naturähnliche“ elektrische Stimulation durchzuführen, die vom Gehirn „verstanden“ wird. Die Nervenzellen müssen also die Informationen so aufnehmen, als wenn es ein Signal wäre, das von echten Hirnzellen erzeugt wurde. „Man kann das Gehirn aber nicht einfach mit elektronischen Signalen bombardieren. Nur wenn man das Gehirn genau versteht, kann es so stimuliert werden, dass es die Signale auch aufnimmt und weiterleitet,“ erläutert Professor Klaus Pawelzik, Wissenschaftler vom Zentrum für Kognitionswissenschaften der Uni Bremen.

Ein weiteres großes Problem liegt darin, ein Implantat zu bauen, das über viele Jahre sicher die Stimulation des Hirns ermöglichen kann. Ein Paradebeispiel hierfür ist das Cochlea Implantat, das vielen Menschen ermöglicht, bei einer Schädigung des Gehörs wieder Töne der Umgebung wahrzunehmen. In diesem speziellen Beispiel wird jedoch die Hörschnecke anstatt des Gehirns elektrisch gereizt, was die Einspeisung extrem vereinfacht. „Die von uns zu lösenden Probleme sind um ein Vielfaches komplizierter“, sagt Professor Walter Lang vom Institut für Mikrosensoren, -aktoren und -systeme (IMSAS). „Hier bewährt sich wieder die Struktur der Universität Bremen mit ihrer starken Vernetzung über die Fachbereiche hinweg“. In den beiden bewilligten Projekten suchen sieben Ingenieure und Wissenschaftler der Universität Bremen aus vier verschiedenen Instituten gemeinsam nach Lösungen.

Weitere Projektinformationen

Im Rahmen der von der Exzellenzinitiative mit 750.000 Euro geförderten Creative Unit „I-See - Das künstliche Auge: Chronische drahtlose Schnittstellen zum visuellen Kortex“ (www.isee.uni-bremen.de) forschen die Professoren Walter Lang (Institut für Mikrosensoren, -aktoren und -systeme), Andreas Kreiter (Institut für Hirnforschung), Steffen Paul (Institut für Theoretische Elektrotechnik und Mikroelektronik) und Klaus Pawelzik (Institut für theoretische Physik) über drei Jahre hinweg zu den Grundlagen von kortikalen Sehprothesen. Ziel ist es, aus einfachen Lichtpunkten, die durch elektrische Stimulation der Sehrinde erzeugt werden, bei Rhesusaffen eine kontrollierte Sehwahrnehmung zu generieren. Neben diesen neurobiologischen Untersuchungen und dafür notwendigen theoretischen Modellen soll auf der technischen Seite ein kabelloser und unter dem Schädel implantierbarer Stimulator entwickelt werden. Dieser Stimulator wird auch die raum-zeitliche Aktivität an der Oberfläche des Gehirns detailliert messen können. Diese Information über die neuronale Aktivität ist wichtig, um für das Gehirn gut verarbeitbare elektrische Stimulationsmuster zu erzeugen.

Das zweite neue Forschungsprojekt „InAuKa“ mit dem kompletten Titel „Interareale Phasenkohärenz als ein Mechanismus für aufmerksamkeitsabhängige Weiterleitung von neuronalen Signalen: Eine modelgeleitete kausale Analyse, die neue treibende Multikontakt-Silizium-Elektroden für intra-kortikale chronische Stimulation und Messung in Primaten nutzt“ widmet sich der Frage, wie man am Beispiel der visuellen Aufmerksamkeit Informationen in einen laufenden Informationsverarbeitungsprozess einfügen kann. Neben den hierfür notwendigen Experimenten mit Rhesusaffen und der Entwicklung von entsprechenden Netzwerkmodellen der neuronalen Informationsverarbeitung werden spezielle Multikontakt-Siliziumelektroden entwickelt und erprobt. Im Projekt „InAuKa“, das drei Jahre lang mit 575.000 Euro von der DFG im Rahmen des Schwerpunktsprogramms „Resolving and Manipulating Neuronal Networks in the Mammalian Brain - from Correlative to Causal Analsis“ gefördert wird, kooperieren die Arbeitsgruppen von Andreas Kreiter, Walter Lang, Dr. Udo Ernst (Institut für theoretische Physik) und Klaus Pawelzik.

Weitere Informationen:

Universität Bremen
Institut für theoretische Physik
Dr. David Rotermund
Tel.: 0421 218 62003
E-Mail: davrot@neuro.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Premiere einer verblüffenden Technik
23.05.2017 | Deutsches Herzzentrum Berlin

nachricht Radioembolisation: Beim Leberkrebs mehr als nur eine Alternative!
22.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie