Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Hirnchirurgen erproben Navigationshilfe im Schädel

25.01.2011
Neurochirurgen verlassen sich bei Operationen unter anderem auf detaillierte Hirn-Atlanten. Diese zeigen zwar den Normalzustand, nicht aber die individuellen anatomischen Verhältnisse im Schädel des Patienten. Ein neues Verfahren könnte Medizinern künftig die Orientierung im Gehirn erleichtern.

Forscher der Universität Bonn und des Rehabilitationszentrums Godeshöhe haben die Navigationshilfe in einer Pilotstudie erprobt. In der Zeitschrift Neurosurgery (doi: 10.1227/NEU.0b013e31820a1a20) berichten sie über einen Parkinson-Patienten, den sie so erfolgreich operiert haben.

Jeder Mensch ist anders. Jedes Gehirn auch. Diese Tatsache erschwert unter anderem die Behandlung von Parkinson-Patienten: Das für die Krankheit charakteristische starke Zittern lässt sich zwar in aller Regel durch einen operativen Eingriff beheben. Dazu muss der Hirnchirurg aber exakt die gewünschte Zielregion treffen. Und das, ohne sie sehen zu können: Er operiert gewissermaßen im Blindflug.

Die im Neurosurgery-Artikel vorgestellte Methode könnte sie dabei künftig unterstützen. Sie basiert darauf, dass sich mit modernen Magnetresonanz-Tomographen die „Verkabelung“ des Gehirns sichtbar machen lässt. „Der Kabelstrang, für den wir uns interessieren, liegt rund acht Zentimeter unter der Schädeldecke im so genannten Thalamus“, erklärt der Bonner Neurochirurg Professor Dr. Volker Coenen. „Typischerweise leiden Parkinson-Patienten unter einem Tremor, der koordinierte Bewegungen erschwert oder gar unmöglich macht. Wenn wir in die Nähe des Thalamus-Kabels eine Elektrode implantieren und mit elektrischen Pulsen reizen, verschwindet dieses Zittern meist.“

Korrekte Platzierung gelingt nicht immer

Doch wo liegt der Kabelstrang genau? Die direkte Sicht ist dem Chirurgen versperrt: Die Operationsöffnung in der Schädeldecke misst nur wenige Millimeter. Außerdem befindet sich sein Ziel anderthalb Handbreit unter der Hirnoberfläche. Doch selbst wenn er freie Sicht hätte, könnte er das Nervenbündel mit bloßem Auge nicht ausmachen. Dazu hebt es sich nicht genug von der umgebenden Hirnmasse ab. Selbst moderne Röntgenverfahren wie die Computertomographie müssen in diesem Fall passen.

Die Operation erfolgt daher immer unter örtlicher Betäubung. So lässt sich direkt kontrollieren, ob der Tremor bei Reizung der Elektrode nachlässt. Ansonsten heißt es nachjustieren. Dennoch ist der Eingriff selbst bei erfahrenen Chirurgen nicht immer von Erfolg gekrönt. Dazu sind Gehirne individuell einfach zu unterschiedlich. „Außerdem war bislang nicht klar, ob es tatsächlich der Kabelstrang ist, den wir treffen müssen, oder eine Region in der Nähe“, erläutert Coenen.

„Landkarte“ des Gehirns

In ihrer Pilotstudie haben die Autoren daher bei einem 73-Jährigen vor der OP den Schädel mit einem speziellen Magnetresonanz-Tomographie-Verfahren durchleuchtet. Damit lässt sich unter anderem feststellen, in welche Richtungen das Wasser im Hirngewebe diffundiert. Nervenstränge sind für die Gewebsflüssigkeit ein undurchdringliches Hindernis: Sie kann lediglich daran entlang fließen. Diese gerichteten Wasserströme werden im Tomographie-Bild sichtbar.

Die Ärzte erstellten so eine individuelle Landkarte des Gehirns ihres Patienten. Darin war auch das entsprechende Nervenbündel im Thalamus eingezeichnet. Bei der Operation konnten sie die Elektrode daher exakt an die passende Stelle schieben.

Die Elektrode endet in vier Kontakten, die jeweils einige Millimeter auseinander liegen. „Wir haben nun jeden dieser Kontakte einzeln gereizt und dann die Wirkung auf den Tremor untersucht“, sagt Coenen. Das Resultat war eindeutig: Das Zittern ließ sich umso besser kontrollieren, je geringer der Abstand des gereizten Kontakts zum Kabelstrang war. „Das Nervenbündel im Thalamus ist also tatsächlich die Struktur, auf die es bei der Operation ankommt“, resümiert der Neurochirurg. „Wir wollen nun in einer umfangreicheren Studie überprüfen, ob uns unser Verfahren tatsächlich dabei hilft, die Elektroden korrekt zu platzieren.“

Falls ja, wäre das für Parkinson-Patienten eine gute Nachricht. Denn einerseits ließe sich die Erfolgsquote der Operation eventuell durch eine passgenauere Platzierung der Elektroden noch steigern. Außerdem gilt: Je besser die Elektrode „sitzt“, desto geringer die Spannung, mit der sie gereizt werden muss. Und damit sinkt wiederum das Risiko, dass angrenzende Hirnbereiche ungewollt ebenfalls stimuliert werden.

Kontakt:
Professor Dr. Volker Arnd Coenen
Schwerpunkt Stereotaxie und MR-basierte Operationsverfahren
Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Bonn
Telefon: 0228/287-16503
E-Mail: volker.coenen@ukb.uni-bonn.de

Frank Luerweg | Uni Bonn
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise