Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bilder vom schlagenden Herzen aus dem Echtzeit-MRT

08.10.2015

Gemeinschaftsprojekt von Fraunhofer-Gesellschaft und Max-Planck-Gesellschaft zur schnellen und schonenden Untersuchung von Herzpatienten erfolgreich abgeschlossen.

Herzerkrankungen lassen sich heute mit der Magnetresonanz-Tomographie schonend, präzise und kostengünstig diagnostizieren. Doch die Methode hat Grenzen: Kinder sowie Patienten mit Herzrhythmusstörungen lassen sich nur eingeschränkt untersuchen.


Die am Fraunhofer MEVIS entwickelte Software erkennt in den Echtzeit-MRT-Daten automatisch die Atem- und Kontraktionsphasen des Herzens, ohne auf EKG-Informationen angewiesen zu sein. Dadurch können Herzpatienten schneller und einfacher untersucht werden.

Abhilfe verspricht nun ein Gemeinschaftsprojekt des Fraunhofer-Instituts für Bildgestützte Medizin MEVIS und des Max-Planck-Instituts für Biophysikalische Chemie. Den Experten ist es gelungen, die Bildaufnahmen erheblich zu beschleunigen und damit das Einsatzfeld der Methode zu erweitern.

Für die Diagnose von Herz-Kreislauf-Erkrankungen spielt die Magnetresonanz-Tomographie (MRT) eine immer wichtigere Rolle. Die Gründe: Sie belastet die Patienten nicht mit Röntgenstrahlung, und anders als ein Herzkatheter ist sie nichtinvasiv, also mit keinem Eingriff verbunden.

Außerdem liefert ein MR-Scanner Informationen, die kein anderes bildgebendes Verfahren zu geben vermag. So kann er den Zustand des Herzmuskelgewebes klassifizieren. Aufgrund dieser Vorteile erfolgen immer mehr Herzaufnahmen per MRT – auch die Deutsche Gesellschaft für Kardiologie empfiehlt den verstärkten Einsatz von MRT-Bildgebung zur Herzdiagnostik.

Bislang aber lässt sich die Methode nur mit Einschränkungen nutzen. Der Grund: Die Bildaufnahme erfolgt nicht schnell genug, um die Bewegungen des Herzens, verursacht durch Atmung und Herzschlag, direkt nachzuverfolgen. Um die Atembewegung zu verhindern, müssen die Patienten deshalb während der Untersuchung die Luft anhalten.

Gleichzeitig müssen sie an ein EKG angeschlossen sein, das ihren Herzschlag erfasst. Nur so lässt sich bei der Bildrekonstruktion nachträglich feststellen, zu welcher Phase des Herzschlags eine bestimmte Aufnahme gehört.

Für einige Patientengruppen bereiten diese Einschränkungen Probleme: Kleinkinder, die ihren Atem nicht kontrollieren können, müssen bislang für die Bildaufnahme in der Regel sediert werden. Und bei Menschen, die an Herzrhythmusstörungen leiden, versagt das Verfahren zumeist: Bei ihnen liefert das EKG keine verlässlichen Daten für die Rekonstruktion der Bilder.

Abhilfe kann nun CaFuR (Cardiac Function in Realtime) schaffen, ein kürzlich abgeschlossenes Gemeinschaftsprojekt von Fraunhofer-Gesellschaft und Max-Planck-Gesellschaft. Beteiligt war die Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie in Göttingen sowie das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen.

Die Göttinger Experten um Prof. Jens Frahm haben eine Methode entwickelt, die MRT-Aufnahmen in Echtzeit ermöglicht. „Bilder mit extrem verkürzten Messzeiten gestatten es nun, Filme vom schlagenden Herzen aufzunehmen: mit 30 bis 50 Bildern pro Sekunde, bei freier Atmung und ohne EKG. Damit wird es erstmals möglich, direkt die Reaktionen des Herzmuskels oder des Blutflusses bei körperlicher Belastung zu beobachten“ erklärt Prof. Frahm.

Fraunhofer MEVIS entwickelte die dafür nötigen Bildanalysemethoden – insbesondere einen Algorithmus, der in den Daten automatisch die Atem- und Kontraktionsphasen des Herzens identifiziert, ohne dabei auf EKG-Informationen angewiesen zu sein. „Eine Herausforderung bestand unter anderem in den beträchtlichen Datenmengen“, erläutert MEVIS-Projektleiterin Dr.-Ing. Anja Hennemuth. „Bei einer Untersuchung fallen bis zu 8 Gigabyte an Bilddaten an, die vom Arzt nicht mehr manuell ausgewertet werden können.“

Ein weiteres Problem: Die in schneller Folge aufgenommenen Bilder weisen weniger klare Kontraste als herkömmliche MRT-Aufnahmen auf. So können die Intensitätsunterschiede zwischen Blut und Gewebe wechseln, was es schwierig macht, beide verlässlich zu unterscheiden. „Mit den klassischen Methoden kommt man da nicht weiter“, betont Hennemuth. „Wir mussten neue, selbstlernende Algorithmen entwickeln, die auch bei wechselnden Kontrasten den Herzmuskel zuverlässig finden.“

In ersten Tests hat sich das Verfahren schon bewährt. Kinderkardiologen nutzen es bereits in der Forschung. Dank der neuen Methode können die Kinder nun wach im MR-Scanner liegen und zum Beispiel in die Pedale eines Liegerad-Hometrainers treten. Damit lässt sich ihr Herz nun auch unter definierter Belastung untersuchen.

Da kein EKG mehr angeschlossen werden muss, verringert sich die Zeit für die Bildaufnahme um bis zu 50 Prozent – angenehm für die Patienten und kostensparend für die Kassen. Ferner erlaubt das Verfahren, neuartige diagnostische Informationen zu gewinnen und die individuelle Herzfunktion genauer zu charakterisieren, etwa bei Patienten mit Herzrhythmusstörungen.

Am Universitätsklinikum Göttingen hat die klinische Erprobung bereits begonnen, bald sollen weitere Zentren folgen. „Eine neue Hardware ist nicht nötig, es genügt eine Software-Erweiterung für die bestehenden MRT-Geräte“, sagt Anja Hennemuth. „Wir hoffen, dass die Methode schon im kommenden Jahr einsatzbereit ist.“

Weitere Informationen:

http://www.mevis.fraunhofer.de/aktuelles/presseinformation/article/bilder-vom-sc...

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops