Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bilder vom schlagenden Herzen aus dem Echtzeit-MRT

08.10.2015

Gemeinschaftsprojekt von Fraunhofer-Gesellschaft und Max-Planck-Gesellschaft zur schnellen und schonenden Untersuchung von Herzpatienten erfolgreich abgeschlossen.

Herzerkrankungen lassen sich heute mit der Magnetresonanz-Tomographie schonend, präzise und kostengünstig diagnostizieren. Doch die Methode hat Grenzen: Kinder sowie Patienten mit Herzrhythmusstörungen lassen sich nur eingeschränkt untersuchen.


Die am Fraunhofer MEVIS entwickelte Software erkennt in den Echtzeit-MRT-Daten automatisch die Atem- und Kontraktionsphasen des Herzens, ohne auf EKG-Informationen angewiesen zu sein. Dadurch können Herzpatienten schneller und einfacher untersucht werden.

Abhilfe verspricht nun ein Gemeinschaftsprojekt des Fraunhofer-Instituts für Bildgestützte Medizin MEVIS und des Max-Planck-Instituts für Biophysikalische Chemie. Den Experten ist es gelungen, die Bildaufnahmen erheblich zu beschleunigen und damit das Einsatzfeld der Methode zu erweitern.

Für die Diagnose von Herz-Kreislauf-Erkrankungen spielt die Magnetresonanz-Tomographie (MRT) eine immer wichtigere Rolle. Die Gründe: Sie belastet die Patienten nicht mit Röntgenstrahlung, und anders als ein Herzkatheter ist sie nichtinvasiv, also mit keinem Eingriff verbunden.

Außerdem liefert ein MR-Scanner Informationen, die kein anderes bildgebendes Verfahren zu geben vermag. So kann er den Zustand des Herzmuskelgewebes klassifizieren. Aufgrund dieser Vorteile erfolgen immer mehr Herzaufnahmen per MRT – auch die Deutsche Gesellschaft für Kardiologie empfiehlt den verstärkten Einsatz von MRT-Bildgebung zur Herzdiagnostik.

Bislang aber lässt sich die Methode nur mit Einschränkungen nutzen. Der Grund: Die Bildaufnahme erfolgt nicht schnell genug, um die Bewegungen des Herzens, verursacht durch Atmung und Herzschlag, direkt nachzuverfolgen. Um die Atembewegung zu verhindern, müssen die Patienten deshalb während der Untersuchung die Luft anhalten.

Gleichzeitig müssen sie an ein EKG angeschlossen sein, das ihren Herzschlag erfasst. Nur so lässt sich bei der Bildrekonstruktion nachträglich feststellen, zu welcher Phase des Herzschlags eine bestimmte Aufnahme gehört.

Für einige Patientengruppen bereiten diese Einschränkungen Probleme: Kleinkinder, die ihren Atem nicht kontrollieren können, müssen bislang für die Bildaufnahme in der Regel sediert werden. Und bei Menschen, die an Herzrhythmusstörungen leiden, versagt das Verfahren zumeist: Bei ihnen liefert das EKG keine verlässlichen Daten für die Rekonstruktion der Bilder.

Abhilfe kann nun CaFuR (Cardiac Function in Realtime) schaffen, ein kürzlich abgeschlossenes Gemeinschaftsprojekt von Fraunhofer-Gesellschaft und Max-Planck-Gesellschaft. Beteiligt war die Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie in Göttingen sowie das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen.

Die Göttinger Experten um Prof. Jens Frahm haben eine Methode entwickelt, die MRT-Aufnahmen in Echtzeit ermöglicht. „Bilder mit extrem verkürzten Messzeiten gestatten es nun, Filme vom schlagenden Herzen aufzunehmen: mit 30 bis 50 Bildern pro Sekunde, bei freier Atmung und ohne EKG. Damit wird es erstmals möglich, direkt die Reaktionen des Herzmuskels oder des Blutflusses bei körperlicher Belastung zu beobachten“ erklärt Prof. Frahm.

Fraunhofer MEVIS entwickelte die dafür nötigen Bildanalysemethoden – insbesondere einen Algorithmus, der in den Daten automatisch die Atem- und Kontraktionsphasen des Herzens identifiziert, ohne dabei auf EKG-Informationen angewiesen zu sein. „Eine Herausforderung bestand unter anderem in den beträchtlichen Datenmengen“, erläutert MEVIS-Projektleiterin Dr.-Ing. Anja Hennemuth. „Bei einer Untersuchung fallen bis zu 8 Gigabyte an Bilddaten an, die vom Arzt nicht mehr manuell ausgewertet werden können.“

Ein weiteres Problem: Die in schneller Folge aufgenommenen Bilder weisen weniger klare Kontraste als herkömmliche MRT-Aufnahmen auf. So können die Intensitätsunterschiede zwischen Blut und Gewebe wechseln, was es schwierig macht, beide verlässlich zu unterscheiden. „Mit den klassischen Methoden kommt man da nicht weiter“, betont Hennemuth. „Wir mussten neue, selbstlernende Algorithmen entwickeln, die auch bei wechselnden Kontrasten den Herzmuskel zuverlässig finden.“

In ersten Tests hat sich das Verfahren schon bewährt. Kinderkardiologen nutzen es bereits in der Forschung. Dank der neuen Methode können die Kinder nun wach im MR-Scanner liegen und zum Beispiel in die Pedale eines Liegerad-Hometrainers treten. Damit lässt sich ihr Herz nun auch unter definierter Belastung untersuchen.

Da kein EKG mehr angeschlossen werden muss, verringert sich die Zeit für die Bildaufnahme um bis zu 50 Prozent – angenehm für die Patienten und kostensparend für die Kassen. Ferner erlaubt das Verfahren, neuartige diagnostische Informationen zu gewinnen und die individuelle Herzfunktion genauer zu charakterisieren, etwa bei Patienten mit Herzrhythmusstörungen.

Am Universitätsklinikum Göttingen hat die klinische Erprobung bereits begonnen, bald sollen weitere Zentren folgen. „Eine neue Hardware ist nicht nötig, es genügt eine Software-Erweiterung für die bestehenden MRT-Geräte“, sagt Anja Hennemuth. „Wir hoffen, dass die Methode schon im kommenden Jahr einsatzbereit ist.“

Weitere Informationen:

http://www.mevis.fraunhofer.de/aktuelles/presseinformation/article/bilder-vom-sc...

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE