Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel zur Diagnose von Blutgefäß-Erkrankungen

20.02.2007
Bernhard Keppler, Vorstand des Instituts für Anorganische Chemie, entwickelt derzeit gemeinsam mit seiner Arbeitsgruppe eine neue Möglichkeit, um ergänzend zur Magnetresonanz-Untersuchung Blutgefäße exakter darstellen zu können.

Mittel zum Zweck sind dabei eigens hergestellte Nanopartikel, die sich an die Innenwand des Blutgefäßes anlagern und damit die Gefäßwand sichtbar machen. So könnten Mediziner frühzeitig Gefäß verengende Prozesse oder sogar Tumore diagnostizieren und behandeln.

Derzeit ist die Technik der Magnetresonanz das einzige Verfahren, das ohne Strahlenbelastung ein komplettes Schnittbild des menschlichen Körpers darstellen kann. Die Durchblutung des Gewebes gibt dabei wichtige Hinweise, ob ein krankhafter Prozess vorliegt oder nicht. Dazu werden Kontrastmittel verwendet, die dafür sorgen, dass Gefäße und Durchblutungsunterschiede sichtbar werden.

Bei der Darstellung der Blutgefäße selbst wird die Sache komplizierter. Man kann zwar das Blut und damit den Blutfluss markieren und dadurch ein indirektes Bild der Gefäßwand erhalten. Dies ist aber wesentlich ungenauer als eine direkte Markierung. "Es besteht ein enormer Bedarf, Blutgefäße exakt zu untersuchen", erklärt O. Univ.-Prof. DDr. Bernhard Keppler. Denn an Blutgefäßen können sich sogenannte Plaques, bestehend aus fettartigen Substanzen und Kalk, ablagern, die zur gefäßverengenden Krankheit Arteriosklerose führen können. Dies hat natürlich besondere Bedeutung bei den Herzkranzgefäßen, aber auch die Erkennung von charakteristischen Tumorblutgefäßen würde für den behandelnden Radiologen leichter werden. "Eine exakte Diagnose in der Früherkennung kann einen großen Vorteil bei der Behandlung bedeuten", so Keppler.

... mehr zu:
»Blutgefäß »DDr »Gefäßwand

Nanopartikel als Mittel zum Zweck

Um genau dieses Problem der Darstellung der Gefäßwand zu lösen, greift Bernhard Keppler gemeinsam mit Ao. Univ.-Prof. Dr. Vladimir Arion und Dr. Irena Paschkunova zu einem Trick: Sie stellen Nanopartikel her, die sich selektiv an die Wände des zu untersuchenden Gefäßes anlagern. Ein zuckerhaltiges Protein, ein Lektin, das aus Tomaten gewonnen wird, fungiert als Trägersubstanz. Dazu kommt noch das Metall Gadolinium, das als Kontrastmittel zur Darstellung der Gefäßwand dient. Die freien Elektronen des Gadoliniums sind für das kontrastgebende Signal verantwortlich. Diese Untersuchungen zu den neuen bildgebenden Verfahren erfolgen in Kooperation mit Ao. Univ.-Prof. Dr. Paul Debbage und O. Univ.-Prof. Dr. Werner Jaschke von der Medizinischen Universität Innsbruck.

Noch steht der Chemiker und Arzt vor dem Problem, Nanopartikel in größerer Menge zu produzieren: "In diesem Bereich gibt es noch wenig Erfahrung bei der Synthese der Substanz, und der Herstellungsprozess ist sehr aufwändig." Die Patentierung des Verfahrens läuft bereits.

Kooperation mit Umweltgeowissenschaftern bei der Charakterisierung
An dem Projekt beteiligt sind auch Umweltgeowissenschafter der Universität Wien. Univ.-Prof. Dr. Thilo Hofmann und Dr. Frank von der Kammer beschäftigen sich seit Jahren mit der Erforschung von Nanopartikeln, die natürlicherweise in der Umwelt vorkommen und untersuchen ihr Verhalten. Auch mit künstlich hergestellten Nanopartikeln haben sie schon Erfahrungen gesammelt. "Im Rahmen dieses Projekt können wir unser Wissen über Messungen von Nanopartikeln im Wasser einbringen", sagt Frank von der Kammer. Körperflüssigkeiten wie Blut seien zwar aufgrund der Dickflüssigkeit ein schwierigeres Medium, aber prinzipiell ist eine Messung genauso möglich, so der Geowissenschafter: "Mit einer eigens entwickelten Methode analysieren und messen wir das Verhalten der Nanopartikeln im Blut."

Erste Versuche viel versprechend

In Tierversuchen an Nagern, die an der Medizinischen Universität Innsbruck durchgeführt wurden, hat sich das Bild gebende Verfahren auf der Basis von Nanopartikeln als viel versprechende neue Methode erwiesen. Sollten die toxikologische Prüfung der Substanz und weitere Versuchsreihen an Tieren, vor allem an Schweinen, die über dem Menschen vergleichbare Herzkranzgefäße verfügen, ebenfalls positiv verlaufen, könnten die Nanopartikeln in wenigen Jahren erstmals im klinischen Bereich an Menschen getestet werden. "Ich gehe davon aus, dass unsere Methode gute Bilder liefern wird", ist Keppler überzeugt.

Im Rahmen des Universitären Forschungsschwerpunkts "Materialwissenschaften - Funktionalisierte Materialen und Nanostrukturen" hat O. Univ.-Prof. DDr. Bernhard Keppler im Oktober 2006 das Projekt "Development and Optimization of Multifunctional Nanoparticles for Clinical Molecular Imaging and Therapy" gestartet. In den nächsten drei Jahren wird er in Kooperation mit Univ.-Prof. Dr. Thilo Hofmann vom Department für Umweltgeowissenschaften auf diesem Gebiet forschen. Die Universität Wien fördert das Projekt mit 485.000 Euro.

Kontakt:
O. Univ.-Prof. DDr. Bernhard Keppler
Institut für Anorganische Chemie
Universität Wien
1090 Wien, Währingerstraße 42
T +43-1-4277-52602
bernhard.keppler@univie.ac.at
Rückfragehinweis:
Mag. Alexandra Frey
Öffentlichkeitsarbeit und Veranstaltungsmanagement
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexandra.frey@univie.ac.at

Alexandra Frey | idw
Weitere Informationen:
http://public.univie.ac.at
http://www.univie.ac.at/iac

Weitere Berichte zu: Blutgefäß DDr Gefäßwand

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik