Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel zur Diagnose von Blutgefäß-Erkrankungen

20.02.2007
Bernhard Keppler, Vorstand des Instituts für Anorganische Chemie, entwickelt derzeit gemeinsam mit seiner Arbeitsgruppe eine neue Möglichkeit, um ergänzend zur Magnetresonanz-Untersuchung Blutgefäße exakter darstellen zu können.

Mittel zum Zweck sind dabei eigens hergestellte Nanopartikel, die sich an die Innenwand des Blutgefäßes anlagern und damit die Gefäßwand sichtbar machen. So könnten Mediziner frühzeitig Gefäß verengende Prozesse oder sogar Tumore diagnostizieren und behandeln.

Derzeit ist die Technik der Magnetresonanz das einzige Verfahren, das ohne Strahlenbelastung ein komplettes Schnittbild des menschlichen Körpers darstellen kann. Die Durchblutung des Gewebes gibt dabei wichtige Hinweise, ob ein krankhafter Prozess vorliegt oder nicht. Dazu werden Kontrastmittel verwendet, die dafür sorgen, dass Gefäße und Durchblutungsunterschiede sichtbar werden.

Bei der Darstellung der Blutgefäße selbst wird die Sache komplizierter. Man kann zwar das Blut und damit den Blutfluss markieren und dadurch ein indirektes Bild der Gefäßwand erhalten. Dies ist aber wesentlich ungenauer als eine direkte Markierung. "Es besteht ein enormer Bedarf, Blutgefäße exakt zu untersuchen", erklärt O. Univ.-Prof. DDr. Bernhard Keppler. Denn an Blutgefäßen können sich sogenannte Plaques, bestehend aus fettartigen Substanzen und Kalk, ablagern, die zur gefäßverengenden Krankheit Arteriosklerose führen können. Dies hat natürlich besondere Bedeutung bei den Herzkranzgefäßen, aber auch die Erkennung von charakteristischen Tumorblutgefäßen würde für den behandelnden Radiologen leichter werden. "Eine exakte Diagnose in der Früherkennung kann einen großen Vorteil bei der Behandlung bedeuten", so Keppler.

... mehr zu:
»Blutgefäß »DDr »Gefäßwand

Nanopartikel als Mittel zum Zweck

Um genau dieses Problem der Darstellung der Gefäßwand zu lösen, greift Bernhard Keppler gemeinsam mit Ao. Univ.-Prof. Dr. Vladimir Arion und Dr. Irena Paschkunova zu einem Trick: Sie stellen Nanopartikel her, die sich selektiv an die Wände des zu untersuchenden Gefäßes anlagern. Ein zuckerhaltiges Protein, ein Lektin, das aus Tomaten gewonnen wird, fungiert als Trägersubstanz. Dazu kommt noch das Metall Gadolinium, das als Kontrastmittel zur Darstellung der Gefäßwand dient. Die freien Elektronen des Gadoliniums sind für das kontrastgebende Signal verantwortlich. Diese Untersuchungen zu den neuen bildgebenden Verfahren erfolgen in Kooperation mit Ao. Univ.-Prof. Dr. Paul Debbage und O. Univ.-Prof. Dr. Werner Jaschke von der Medizinischen Universität Innsbruck.

Noch steht der Chemiker und Arzt vor dem Problem, Nanopartikel in größerer Menge zu produzieren: "In diesem Bereich gibt es noch wenig Erfahrung bei der Synthese der Substanz, und der Herstellungsprozess ist sehr aufwändig." Die Patentierung des Verfahrens läuft bereits.

Kooperation mit Umweltgeowissenschaftern bei der Charakterisierung
An dem Projekt beteiligt sind auch Umweltgeowissenschafter der Universität Wien. Univ.-Prof. Dr. Thilo Hofmann und Dr. Frank von der Kammer beschäftigen sich seit Jahren mit der Erforschung von Nanopartikeln, die natürlicherweise in der Umwelt vorkommen und untersuchen ihr Verhalten. Auch mit künstlich hergestellten Nanopartikeln haben sie schon Erfahrungen gesammelt. "Im Rahmen dieses Projekt können wir unser Wissen über Messungen von Nanopartikeln im Wasser einbringen", sagt Frank von der Kammer. Körperflüssigkeiten wie Blut seien zwar aufgrund der Dickflüssigkeit ein schwierigeres Medium, aber prinzipiell ist eine Messung genauso möglich, so der Geowissenschafter: "Mit einer eigens entwickelten Methode analysieren und messen wir das Verhalten der Nanopartikeln im Blut."

Erste Versuche viel versprechend

In Tierversuchen an Nagern, die an der Medizinischen Universität Innsbruck durchgeführt wurden, hat sich das Bild gebende Verfahren auf der Basis von Nanopartikeln als viel versprechende neue Methode erwiesen. Sollten die toxikologische Prüfung der Substanz und weitere Versuchsreihen an Tieren, vor allem an Schweinen, die über dem Menschen vergleichbare Herzkranzgefäße verfügen, ebenfalls positiv verlaufen, könnten die Nanopartikeln in wenigen Jahren erstmals im klinischen Bereich an Menschen getestet werden. "Ich gehe davon aus, dass unsere Methode gute Bilder liefern wird", ist Keppler überzeugt.

Im Rahmen des Universitären Forschungsschwerpunkts "Materialwissenschaften - Funktionalisierte Materialen und Nanostrukturen" hat O. Univ.-Prof. DDr. Bernhard Keppler im Oktober 2006 das Projekt "Development and Optimization of Multifunctional Nanoparticles for Clinical Molecular Imaging and Therapy" gestartet. In den nächsten drei Jahren wird er in Kooperation mit Univ.-Prof. Dr. Thilo Hofmann vom Department für Umweltgeowissenschaften auf diesem Gebiet forschen. Die Universität Wien fördert das Projekt mit 485.000 Euro.

Kontakt:
O. Univ.-Prof. DDr. Bernhard Keppler
Institut für Anorganische Chemie
Universität Wien
1090 Wien, Währingerstraße 42
T +43-1-4277-52602
bernhard.keppler@univie.ac.at
Rückfragehinweis:
Mag. Alexandra Frey
Öffentlichkeitsarbeit und Veranstaltungsmanagement
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexandra.frey@univie.ac.at

Alexandra Frey | idw
Weitere Informationen:
http://public.univie.ac.at
http://www.univie.ac.at/iac

Weitere Berichte zu: Blutgefäß DDr Gefäßwand

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Schlaganfalltherapie: Neues Stimulationsgerät synchronisiert Zeitpunkt der Reize mit aktuellen Hirnsignalen
23.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Smartphones im Kampf gegen die Blindheit
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie