Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Diagnosemöglichkeiten für Hirnerkrankungen mittels SPECT?

25.06.2008
Ein gemeinsames Forschungsprojekt von Magdeburger Hirnforschern und Radiologen zielt darauf ab, neuartige Diagnoseverfahren für geschädigte Nervenzellen zu entwickeln.

Das Prinzip: Thallium-Ionen werden in Fett-Tröpfchen verpackt und ins Gehirn eingeschleust. Mittels der SPECT-Technologie lassen sich damit gesunde, aktive Nervenzellen von Infarkt-geschädigten Hirnregionen unterscheiden.

Das Projekt wird vom BMBF gefördert und in einem Workshop am 26. Juni in Magdeburg vorgestellt.

In den westlichen Industrieländern ist der Schlaganfall die dritthäufigste Todesursache und häufigster Grund für schwere Behinderungen. Allein in Deutschland erleiden ihn etwa 250.000 Menschen jährlich. Lässt sich der Verlust von Nervenzellen beim Schlaganfall aufhalten?

... mehr zu:
»Hirnerkrankung »Nervenzelle »SPECT

Der Einsatz schützender Substanzen mit dem Ziel, minderdurchblutete Hirnareale vor dem Zelltod zu bewahren und dem fortschreitenden Zellverlust entgegenzuwirken, erwies sich bisher als kaum erfolgreich. Hierzu bedarf es einer sicheren Diagnose, inwieweit rettbares Gewebe vorhanden ist. Darüber hinaus benötigt die Medikamentenentwicklung ein nicht-invasives Verfahren zur Bestimmung des Erfolges einer pharmakologischen Intervention.

Ergänzend zu computertomographischen (CT) und Magnet-Resonanz-Tomographie(MRT)-Untersuchungen könnte zu diesem Zweck der direkte Einblick in den Nervenzellstoffwechsel entscheidende Zusatzinformationen liefern. Dies ist möglich mit der sogenannten Single photon emission computed tomography (SPECT).

Bei SPECT-Untersuchungen werden den Patienten winzige Mengen radioaktiver Substanzen, sogenannte Radiopharmaka oder Radiotracer, injiziert, deren Verteilung mit hochempfindlichen Tomographen gemessen und als dreidimensionales Bild sichtbar gemacht wird.

Aus der Art und Weise, wo und wie schnell sich bestimmte Moleküle im Körper anreichern oder wieder ausgeschieden werden, lassen sich wertvolle Schlüsse auf Krankheitsvorgänge ziehen. Die Diagnostik von Hirnerkrankungen mit diesem Verfahren stößt allerdings auf besondere Schwierigkeiten, da nicht alle Radiopharmaka durch die Blut-Hirn-Schranke ins Gehirn eindringen können.

Kürzlich gelang es den Teams von Prof. Klaus Reymann und Prof. Henning Scheich vom Magdeburger Leibniz-Institut für Neurobiologie, einen bereits aus der Herzdiagnostik bekannten Tracer, das Isotop Thallium-201 ins Gehirn einzuschleusen. Wie Dr. Jürgen Goldschmidt und Dr. Ulrich Schröder berichten, konnte mit Hilfe einer chemischen Verpackung, einem lipophilen Komplex, Thallium durch die abdichtenden Zellmembranen der Blut-Hirn-Schranke geschleust werden.

Thallium-Ionen verhalten sich biologisch sehr ähnlich wie die körpereigenen Kalium-Ionen. Je aktiver Zellen sind, um so intensiver ist auch ihr Kalium-Umsatz, und um so mehr steigt auch die Thallium-Aufnahme. Umgekehrt können geschädigte oder abgestorbene Zellen nur noch wenig oder kein Thallium mehr aufnehmen. In ihren Untersuchungen an einem tierexperimentellen Schlaganfall-Modell konnten die Magdeburger Forscher inzwischen die Abhängigkeit der Thallium-Aufnahme vom Grad der Schädigung an einzelnen Nervenzellen mikroskopisch nachweisen.

Auf dem inzwischen zum Patent angemeldeten Verfahren aufbauend wird nun versucht, die Aktivität der Nervenzellen anhand der Thallium-Verteilung nicht-invasiv mittels der SPECT-Technologie im gesamten Gehirn darzustellen. Die Untersuchungen erfolgen im Rahmen einer kürzlich abgeschlossenen Kooperationsvereinbarung gemeinsam mit Prof. Jens Ricke und Oliver Großer aus der Klinik für Radiologie vom Universitätsklinikum Magdeburg.

Mit HiTech-Tomographen der neuesten Generation sind Untersuchungen an Kleintieren, insbesondere also Labormäusen und -ratten, mit einer räumlichen Auflösung möglich geworden, die sich mikroskopischen Dimensionen nähert. Ein solcher leistungsfähiger Kleintier-SPECT/CT-Scanner der Göttinger Firma SCIVIS- ist jetzt am Magdeburger Leibniz-Institut für Neurobiologie in Betrieb genommen worden.

Er eröffnet den Magdeburger Wissenschaftlern neue Wege zur tierexperimentellen Untersuchung diagnostischer und therapeutischer Ansätze des erkrankten Hirns. Diese tierexperimentelle Abklärung der Möglichkeiten des neuen Verfahrens und dessen spätere Umsetzung für die Humanmedizin ist Gegenstand eines Forschungsprojektes, welches durch das Bundesforschungsministerium (BMBF) gefördert wird.

Am 26. Juni 2008 erfolgt im Rahmen eines Workshops zur Anwendung dieser Technologie für Untersuchungen von Hirnerkrankungen auch die offizielle Einweihung des neuen Labors.

Ansprechpartner für Redaktionen:
Prof. Klaus Reymann
Leibniz-Institut für Neurobiologie Magdeburg
Tel. 0163/6275600
e-mail: reymann@ifn-magdeburg.de

Dr. Constanze Seidenbecher | idw
Weitere Informationen:
http://www.ifn-magdeburg.de

Weitere Berichte zu: Hirnerkrankung Nervenzelle SPECT

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten