Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchblick bis ins Detail - Forschungszentrum Jülich erhält 9,4 Tesla Magneten

27.05.2008
Der weltweit größte Magnet für bildgebende Verfahren in der Hirnforschung ist heute im Forschungszentrum eingetroffen. Installiert wird er eine Feldstärke von 9,4 Tesla besitzen - dies entspricht beinahe dem 200.000fachen des Erdmagnetfeldes.

Mit dem gemeinsam vom Forschungszentrum und Siemens Healthcare entwickelten Großgerät "9komma4" werden die Jülicher Hirnforscher zukünftig Strukturen und Stoffwechselvorgänge des Gehirns sichtbar machen können, die sich bisher dem Menschen noch nicht erschlossen haben.

Der Magnet ist das Kernstück eines einzigartigen Großgeräts, welches in Kooperation mit Siemens Healthcare aufgebaut wird. Die Anlage soll 2009 in Betrieb gehen und kombiniert erstmals einen Magnetresonanz-Tomographen (MRT) mit einer Feldstärke von 9,4 Tesla mit einem Positronenemissions-Tomographen (PET).

Die zeitgleiche Bildgebung mit beiden Geräten erlaubt es den Forschern, Strukturen und Stoffwechselvorgänge des Gehirns detaillierter als je zuvor abzubilden und ermöglicht es, Mechanismen für neurodegenerative Erkrankungen wie Alzheimer und Parkinson zu untersuchen.

... mehr zu:
»MRT »PET »Stoffwechselvorgang

"Genauere Erkenntnisse über krankhafte Veränderungen im Gehirn könnten uns helfen, den Ausbruch der Krankheit um Jahre aufzuschieben", erklärt Prof. Jon Shah, Leiter der Jülicher Arbeitsgruppe Magnetresonanz-Physik. "Die potentiellen Einsparungen im Gesundheitswesen sind immens." Siemens und das BMBF unterstützen die Finanzierung des Projekts mit je 10 Millionen Euro.

Der Dank des Vorstandsvorsitzenden Prof. Bachem gilt deshalb ausdrücklich beiden Partnern: "Wir freuen uns sehr, dass das BMBF dieses wegweisende Projekt für eine der größten Herausforderungen unserer Gesellschaft, die Entschlüsslung neurodegenerativer Erkrankungen, so großzügig unterstützt und wir gemeinsam mit unserem langjährigen Partner Siemens zeigen können, wie man Grundlagenforschung nutzbringend in die Anwendung transferiert."

"Siemens und das Forschungszentrum Jülich sind strategische Partner bei einer Vielzahl von Forschungsaktivitäten in den Schwerpunkten Energie und Gesundheit. Das 9,4 Tesla Projekt ist dabei ein herausragendes Beispiel, wie sich die ausgezeichnete Expertise aus Jülich mit den technologischen Stärken des integrierten Siemenskonzerns zum Nutzen der Patienten ergänzen", äußert sich auch Dr. Michael Kassner, Regionenchef Nordrhein der Siemens AG.

Der rund vier Meter lange und 57 Tonnen schwere supraleitende Magnet kam per Schwertransport aus England (Oxford) nach Jülich, wurde im Laufe des Tages per Kran abgeladen und in das eigens für ihn errichtete neue Gebäude gebracht. Dort sorgen in einem 150 Quadratmeter großen Raum 870 Tonnen Stahl für die Abschirmung des Magnetfeldes nach außen, so dass der Magnet in den nächsten Wochen gefahrlos in Betrieb genommen werden kann. Einmalig wird bei dem komplett installierten Gerät der Durchmesser der Röhre mit 90 Zentimetern sein. "So reicht der Platz, um den Probanden Aufgaben zu stellen, bei denen sie einen Knopf drücken oder einen Joystick bewegen müssen, und dabei ihre Gehirnfunktionen auf digitalen Bildern zu beobachten", erläutert Shah.

Gegenüber den 1,5 T- oder 3 T-Geräten, wie sie derzeit üblicherweise in Kliniken stehen, ist der neue 9,4-T MRT ein gewaltiger Fortschritt. Denn je höher das Magnetfeld, desto besser wird die Bildqualität und desto klarer unterscheiden sich verschiedene Gewebetypen voneinander. Sogar das Verhalten einzelner Zellen im lebenden Organismus wird sich verfolgen lassen, wenn sie mit Hilfe von Kontrastmitteln markiert werden.

Wirklich einzigartig wird das neue Gerät durch die Kombination mit einem PET-Einsatz, welcher voraussichtlich ebenfalls 2009 in das System integriert wird. Mit ihm lassen sich Stoffwechselvorgänge beobachten und Abläufe an Rezeptoren - die für die Kommunikation zwischen Gehirnzellen zuständig sind - untersuchen. Die Bilder eines PET alleine sind relativ unscharf, so dass sich daraus nur sehr ungenaue Ortsinformationen ergeben. Gemeinsam mit dem MRT jedoch bildet das PET ein perfektes Team, das den Wissenschaftlern anatomisch detaillierte Bilder liefert und ihnen gleichzeitig die Analyse der ablaufenden molekularen Mechanismen erlaubt. Durch die kombinierte Untersuchung kann das Gehirn gleichsam aus verschiedenen Blickwinkeln im selben Zustand erforscht werden, was nicht möglich ist, wenn die MRT- und PET-Bilder nacheinander aufgenommen werden.

Die Jülicher Kompetenz bei bildgebenden Verfahren wird ergänzt durch die enge Zusammenarbeit mit der Industrie und den benachbarten Universitätskliniken - insbesondere mit der RWTH Aachen im Verbund JARA Brain. So kommt Grundlagenforschung aus Jülich zeitnah in die Praxis. Der Weg von der Erkenntnis zum Nutzen für Patienten wird damit entscheidend verkürzt.

Siemens Healthcare ist derzeit der führende Anbieter in der Hochfeld-Kernspintomographie und ermöglicht als einziger Hersteller weltweit die Kombination eines Magnetresonanz-Tomographen (MRT) mit einer Feldstärke von 9,4 Tesla mit einem Positronenemissions-Tomographen (PET). Im 7 Tesla-Bereich sind von den derzeit circa 30 installierten Anlagen weltweit mehr als die Hälfte Siemenssysteme.

Angela Lindner | idw
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/portal/forschung/highlights/9komma4

Weitere Berichte zu: MRT PET Stoffwechselvorgang

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie