Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Denken zusehen

30.04.2008
Innovativer Magnetoenzephalograph am Biomagnetischen Zentrum des UKJ in Betrieb genommen.

Was passiert eigentlich, wenn das Auge ein Bild aufnimmt? Wie genau übersetzt das Gehirn die Sinneseindrücke in die Information "rechts steht ein Haus"? Und welche Hirnregionen müssen zusammen aktiv werden, damit unser Gehirn die Information erhält, dass der linke kleine Zeh weh tut?

Diese Fragen zum Informationstransfer im Gehirn gehören zu den derzeit spannendsten in den Neurowissenschaften und der Medizinforschung. Antworten versuchen die Wissenschaftler dadurch zu finden, dass sie dem Gehirn faktisch bei der Arbeit "zusehen". Möglich wird dies durch funktionelle Magnetresonanztomographie (fMRT), oder mit Hilfe der selteneren Magnetoenzephalographen (MEG), die die von elektrischen Strömen im Gehirn erzeugten Magnetfelder berührungslos messen und verarbeiten.

Ein solcher Magnetoenzephalograph der jüngsten Generation ist jetzt am Biomagnetischen Zentrum des Universitätsklinikums Jena (UKJ) in Betrieb genommen worden. Das 1,5 Millionen Euro teure "Elekta Neuromag MEG" kann durch eine völlig neue Konstruktion wesentlich mehr Informationen verarbeiten als seine Vorgängermodelle. "Unser neues MEG funktioniert wie ein Helm, den die Probanden aufsetzen, und der so nahezu die gesamte biomagnetische Information des Gehirns gleichzeitig erfassen kann", erklärt Prof. Dr. Jens Haueisen, Leiter des Biomagentischen Zentrums, die Neuerungen. "Vorher waren uns nur punktuelle Messungen an einzelnen Stellen möglich."

... mehr zu:
»MEG »Magnetoenzephalograph »UKJ

Zudem fließen die Daten jetzt über 306 Kanäle statt der vorher 31 in das MEG. "Das erlaubt uns ganz neue und andere Untersuchungen als bisher", ist Haueisen begeistert. "Die Informationsflüsse innerhalb verschiedener Hirnregionen während der Wahrnehmungsprozesse lassen sich so präziser und schneller erfassen und abbilden", so der Wissenschaftler. "Im Prinzip können wir dem Gehirn live bei der Arbeit zusehen". Damit sei eine große Verbesserung der Forschungsmöglichkeiten am UKJ auf dem Gebiet der Untersuchung kognitiver Prozesse erreicht.

Das neue Gerät wird hauptsächlich zu Forschungszwecken eingesetzt. Aktuell kommt das Gerät vor allem in Studien zu Schmerzempfindung, Lärmschwerhörigkeit und zu Reorganisationsprozessen im Gehirn nach Verletzungen zum Einsatz. Diese und weitere Forschungsfragestellungen werden mit dem neuen Gerät u. a. von Forscherteams im Interdisziplinären Zentrum für Klinische Forschung Jena (IZKF) und der Bernstein-Gruppe Jena bearbeitet.

Der Vorteil der vom Magnetoenzephalographen erzeugten Daten gegenüber den Bildern aus dem funktionellen MRT liegt dabei in der hohen zeitlichen Auflösung der elektrischen Aktivitäten verschiedener Hirnareale. "So können wir die komplexen Abläufe der Wahrnehmung hoffentlich umfassender und besser verstehen und künftig daraus Erkenntnisse für die Diagnostik und mögliche Therapien neurologischer Erkrankungen ableiten", blickt Prof. Haueisen in die Zukunft.

Die Bedingungen dafür, die zukünftigen Ziele erreichen zu können, sind in Jena besonders gut: Mit dem neuen MEG verfügt das Jenaer Biomagnetische Zentrum über drei Labore und den Prototypen eines Magneto-Kardiographen. Damit gehört das Zentrum am Universitätsklinikum Jena zu den am besten ausgerüsteten Zentren dieser Art in Deutschland.

Ansprechpartner:
Prof. Dr. Jens Hauseisen
Leiter des Biomagnetischen Zentrums am Universitätsklinikum Jena
Tel.: 03641/9325774
E-Mail: Jens.Haueisen@med.uni-jena.de
Hintergrund Biomagnetische Messverfahren
Biomagnetometer messen feinste biomagnetische Signale der inneren Organe, deren Veränderungen Funktionsstörungen anzeigen. Das Herz erzeugt ebenso wie unser Gehirn schwache bioelektrische und biomagnetische Felder. Störungen dieser Felder zeigen Funktionsstörungen des jeweiligen Organs an und können so auch als aussagekräftiges Diagnoseverfahren eingesetzt werden. Im Bereich der Elektrizität hat die Medizin sich diese Erkenntnis längst zunutze gemacht: Die elektrischen Felder des Herzens misst der Elektro-Kardiograph, die des Gehirns der Elektro-Enzephalograph.

Erst seit den 80er Jahren können dank der technischen Entwicklung auch die biomagnetischen Felder routinemäßig gemessen werden. Der Vorteil dabei besteht darin, dass magnetische Signale im Gegensatz zu den elektrischen sehr klar und unverfälscht gemessen werden können. Sie werden beispielsweise nicht durch die Schädelknochen geschwächt, die auf elektrische Felder isolierend wirken. Biomagnetometer können selbst komplexe Hirnaktivitäten präzise lokalisieren, ohne den Körper des Patienten dabei auch nur zu berühren.

Helena Reinhardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: MEG Magnetoenzephalograph UKJ

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neues DaVinci-OP-System: Universitätsmedizin Mainz erweitert Spektrum an robotergestützten OP´s
03.02.2017 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

nachricht Deutschlandweit erste Installation: Kompakter Roboter assistiert bei MRT-geführter Prostatabiopsie
02.02.2017 | Universitätsklinikum Leipzig AöR

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung