Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Denken zusehen

30.04.2008
Innovativer Magnetoenzephalograph am Biomagnetischen Zentrum des UKJ in Betrieb genommen.

Was passiert eigentlich, wenn das Auge ein Bild aufnimmt? Wie genau übersetzt das Gehirn die Sinneseindrücke in die Information "rechts steht ein Haus"? Und welche Hirnregionen müssen zusammen aktiv werden, damit unser Gehirn die Information erhält, dass der linke kleine Zeh weh tut?

Diese Fragen zum Informationstransfer im Gehirn gehören zu den derzeit spannendsten in den Neurowissenschaften und der Medizinforschung. Antworten versuchen die Wissenschaftler dadurch zu finden, dass sie dem Gehirn faktisch bei der Arbeit "zusehen". Möglich wird dies durch funktionelle Magnetresonanztomographie (fMRT), oder mit Hilfe der selteneren Magnetoenzephalographen (MEG), die die von elektrischen Strömen im Gehirn erzeugten Magnetfelder berührungslos messen und verarbeiten.

Ein solcher Magnetoenzephalograph der jüngsten Generation ist jetzt am Biomagnetischen Zentrum des Universitätsklinikums Jena (UKJ) in Betrieb genommen worden. Das 1,5 Millionen Euro teure "Elekta Neuromag MEG" kann durch eine völlig neue Konstruktion wesentlich mehr Informationen verarbeiten als seine Vorgängermodelle. "Unser neues MEG funktioniert wie ein Helm, den die Probanden aufsetzen, und der so nahezu die gesamte biomagnetische Information des Gehirns gleichzeitig erfassen kann", erklärt Prof. Dr. Jens Haueisen, Leiter des Biomagentischen Zentrums, die Neuerungen. "Vorher waren uns nur punktuelle Messungen an einzelnen Stellen möglich."

... mehr zu:
»MEG »Magnetoenzephalograph »UKJ

Zudem fließen die Daten jetzt über 306 Kanäle statt der vorher 31 in das MEG. "Das erlaubt uns ganz neue und andere Untersuchungen als bisher", ist Haueisen begeistert. "Die Informationsflüsse innerhalb verschiedener Hirnregionen während der Wahrnehmungsprozesse lassen sich so präziser und schneller erfassen und abbilden", so der Wissenschaftler. "Im Prinzip können wir dem Gehirn live bei der Arbeit zusehen". Damit sei eine große Verbesserung der Forschungsmöglichkeiten am UKJ auf dem Gebiet der Untersuchung kognitiver Prozesse erreicht.

Das neue Gerät wird hauptsächlich zu Forschungszwecken eingesetzt. Aktuell kommt das Gerät vor allem in Studien zu Schmerzempfindung, Lärmschwerhörigkeit und zu Reorganisationsprozessen im Gehirn nach Verletzungen zum Einsatz. Diese und weitere Forschungsfragestellungen werden mit dem neuen Gerät u. a. von Forscherteams im Interdisziplinären Zentrum für Klinische Forschung Jena (IZKF) und der Bernstein-Gruppe Jena bearbeitet.

Der Vorteil der vom Magnetoenzephalographen erzeugten Daten gegenüber den Bildern aus dem funktionellen MRT liegt dabei in der hohen zeitlichen Auflösung der elektrischen Aktivitäten verschiedener Hirnareale. "So können wir die komplexen Abläufe der Wahrnehmung hoffentlich umfassender und besser verstehen und künftig daraus Erkenntnisse für die Diagnostik und mögliche Therapien neurologischer Erkrankungen ableiten", blickt Prof. Haueisen in die Zukunft.

Die Bedingungen dafür, die zukünftigen Ziele erreichen zu können, sind in Jena besonders gut: Mit dem neuen MEG verfügt das Jenaer Biomagnetische Zentrum über drei Labore und den Prototypen eines Magneto-Kardiographen. Damit gehört das Zentrum am Universitätsklinikum Jena zu den am besten ausgerüsteten Zentren dieser Art in Deutschland.

Ansprechpartner:
Prof. Dr. Jens Hauseisen
Leiter des Biomagnetischen Zentrums am Universitätsklinikum Jena
Tel.: 03641/9325774
E-Mail: Jens.Haueisen@med.uni-jena.de
Hintergrund Biomagnetische Messverfahren
Biomagnetometer messen feinste biomagnetische Signale der inneren Organe, deren Veränderungen Funktionsstörungen anzeigen. Das Herz erzeugt ebenso wie unser Gehirn schwache bioelektrische und biomagnetische Felder. Störungen dieser Felder zeigen Funktionsstörungen des jeweiligen Organs an und können so auch als aussagekräftiges Diagnoseverfahren eingesetzt werden. Im Bereich der Elektrizität hat die Medizin sich diese Erkenntnis längst zunutze gemacht: Die elektrischen Felder des Herzens misst der Elektro-Kardiograph, die des Gehirns der Elektro-Enzephalograph.

Erst seit den 80er Jahren können dank der technischen Entwicklung auch die biomagnetischen Felder routinemäßig gemessen werden. Der Vorteil dabei besteht darin, dass magnetische Signale im Gegensatz zu den elektrischen sehr klar und unverfälscht gemessen werden können. Sie werden beispielsweise nicht durch die Schädelknochen geschwächt, die auf elektrische Felder isolierend wirken. Biomagnetometer können selbst komplexe Hirnaktivitäten präzise lokalisieren, ohne den Körper des Patienten dabei auch nur zu berühren.

Helena Reinhardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: MEG Magnetoenzephalograph UKJ

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics