Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gehirn beim Denken zusehen

30.04.2008
Innovativer Magnetoenzephalograph am Biomagnetischen Zentrum des UKJ in Betrieb genommen.

Was passiert eigentlich, wenn das Auge ein Bild aufnimmt? Wie genau übersetzt das Gehirn die Sinneseindrücke in die Information "rechts steht ein Haus"? Und welche Hirnregionen müssen zusammen aktiv werden, damit unser Gehirn die Information erhält, dass der linke kleine Zeh weh tut?

Diese Fragen zum Informationstransfer im Gehirn gehören zu den derzeit spannendsten in den Neurowissenschaften und der Medizinforschung. Antworten versuchen die Wissenschaftler dadurch zu finden, dass sie dem Gehirn faktisch bei der Arbeit "zusehen". Möglich wird dies durch funktionelle Magnetresonanztomographie (fMRT), oder mit Hilfe der selteneren Magnetoenzephalographen (MEG), die die von elektrischen Strömen im Gehirn erzeugten Magnetfelder berührungslos messen und verarbeiten.

Ein solcher Magnetoenzephalograph der jüngsten Generation ist jetzt am Biomagnetischen Zentrum des Universitätsklinikums Jena (UKJ) in Betrieb genommen worden. Das 1,5 Millionen Euro teure "Elekta Neuromag MEG" kann durch eine völlig neue Konstruktion wesentlich mehr Informationen verarbeiten als seine Vorgängermodelle. "Unser neues MEG funktioniert wie ein Helm, den die Probanden aufsetzen, und der so nahezu die gesamte biomagnetische Information des Gehirns gleichzeitig erfassen kann", erklärt Prof. Dr. Jens Haueisen, Leiter des Biomagentischen Zentrums, die Neuerungen. "Vorher waren uns nur punktuelle Messungen an einzelnen Stellen möglich."

... mehr zu:
»MEG »Magnetoenzephalograph »UKJ

Zudem fließen die Daten jetzt über 306 Kanäle statt der vorher 31 in das MEG. "Das erlaubt uns ganz neue und andere Untersuchungen als bisher", ist Haueisen begeistert. "Die Informationsflüsse innerhalb verschiedener Hirnregionen während der Wahrnehmungsprozesse lassen sich so präziser und schneller erfassen und abbilden", so der Wissenschaftler. "Im Prinzip können wir dem Gehirn live bei der Arbeit zusehen". Damit sei eine große Verbesserung der Forschungsmöglichkeiten am UKJ auf dem Gebiet der Untersuchung kognitiver Prozesse erreicht.

Das neue Gerät wird hauptsächlich zu Forschungszwecken eingesetzt. Aktuell kommt das Gerät vor allem in Studien zu Schmerzempfindung, Lärmschwerhörigkeit und zu Reorganisationsprozessen im Gehirn nach Verletzungen zum Einsatz. Diese und weitere Forschungsfragestellungen werden mit dem neuen Gerät u. a. von Forscherteams im Interdisziplinären Zentrum für Klinische Forschung Jena (IZKF) und der Bernstein-Gruppe Jena bearbeitet.

Der Vorteil der vom Magnetoenzephalographen erzeugten Daten gegenüber den Bildern aus dem funktionellen MRT liegt dabei in der hohen zeitlichen Auflösung der elektrischen Aktivitäten verschiedener Hirnareale. "So können wir die komplexen Abläufe der Wahrnehmung hoffentlich umfassender und besser verstehen und künftig daraus Erkenntnisse für die Diagnostik und mögliche Therapien neurologischer Erkrankungen ableiten", blickt Prof. Haueisen in die Zukunft.

Die Bedingungen dafür, die zukünftigen Ziele erreichen zu können, sind in Jena besonders gut: Mit dem neuen MEG verfügt das Jenaer Biomagnetische Zentrum über drei Labore und den Prototypen eines Magneto-Kardiographen. Damit gehört das Zentrum am Universitätsklinikum Jena zu den am besten ausgerüsteten Zentren dieser Art in Deutschland.

Ansprechpartner:
Prof. Dr. Jens Hauseisen
Leiter des Biomagnetischen Zentrums am Universitätsklinikum Jena
Tel.: 03641/9325774
E-Mail: Jens.Haueisen@med.uni-jena.de
Hintergrund Biomagnetische Messverfahren
Biomagnetometer messen feinste biomagnetische Signale der inneren Organe, deren Veränderungen Funktionsstörungen anzeigen. Das Herz erzeugt ebenso wie unser Gehirn schwache bioelektrische und biomagnetische Felder. Störungen dieser Felder zeigen Funktionsstörungen des jeweiligen Organs an und können so auch als aussagekräftiges Diagnoseverfahren eingesetzt werden. Im Bereich der Elektrizität hat die Medizin sich diese Erkenntnis längst zunutze gemacht: Die elektrischen Felder des Herzens misst der Elektro-Kardiograph, die des Gehirns der Elektro-Enzephalograph.

Erst seit den 80er Jahren können dank der technischen Entwicklung auch die biomagnetischen Felder routinemäßig gemessen werden. Der Vorteil dabei besteht darin, dass magnetische Signale im Gegensatz zu den elektrischen sehr klar und unverfälscht gemessen werden können. Sie werden beispielsweise nicht durch die Schädelknochen geschwächt, die auf elektrische Felder isolierend wirken. Biomagnetometer können selbst komplexe Hirnaktivitäten präzise lokalisieren, ohne den Körper des Patienten dabei auch nur zu berühren.

Helena Reinhardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: MEG Magnetoenzephalograph UKJ

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzforschung - Neue Katheterklappe in Tübingen entwickelt
16.01.2017 | Universitätsklinikum Tübingen

nachricht Fernüberwachung bei Herzschwäche kann Klinikaufenthalt ersparen
09.01.2017 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften