Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Bildgebung macht Krebstherapie effektiver

19.09.2008
Ein neues Behandlungsverfahren macht die Strahlentherapie bei einem Tumor genauer und schneller als bisher. Siemens hat mit der Kombination aus Linearbeschleuniger und moderner Bildgebung eine Lösung entwickelt, mit der es erstmals möglich ist, den Tumor nicht nur unmittelbar vor jeder Therapieeinheit auf Größe, Lage oder auch Deformierung zu überwachen sondern bei Abweichungen auch unmittelbar zu reagieren. Die behandelnden Ärzte können so die Strahlentherapie dem Patienten zu jedem Zeitpunkt der Behandlung optimal anpassen.

In der Strahlentherapie werden ionisierende, hochenergetische Strahlen und Teilchen zu Heilzwecken eingesetzt. Die auf den Tumor gerichtete Strahlung verändert dabei das Erbmaterial der Tumorzellen so, dass sie sich nicht mehr teilen können und absterben. Im Gegensatz zu Tumorzellen werden gesunde Zellen weit weniger geschädigt und regenerieren sich schneller, da ihr biochemisches Reparatursystem effizienter arbeitet.


Bei bisherigen Behandlungen wird der Tumor zwar bisweilen vor der Therapie mit separaten bildgebenden diagnostischen Methoden lokalisiert, der eigentliche Behandlungsplan kann so allerdings nur sehr zeitaufwendig angepasst werden Mit dem Linearbeschleuniger Artiste von Siemens können die Mediziner dank einer integrierten 3D-Bildgebung den Tumor nun unmittelbar vor jeder Einzelsitzung beobachten und so den Behandlungsstrahl genau positionieren.

Sollte sich der Auswuchs etwa während der Behandlung verschieben, kann die Patientenlagerung präzise angepasst werden. Gleichzeitig kann der Behandlungsplan unkompliziert vor jeder Sitzung an die veränderte Anatomie adaptiert werden. Verringern sich die Krebszellen im Verlauf der Therapie, können die Ärzte auch die Strahlgröße verändern. Hierfür haben die Siemens-Spezialisten eine so genannte Multilamellenblende integriert, mit der das behandelnde Personal die Strahlform mittels 160, jeweils fünf Millimeter dünnen Lamellen individuell und höchstpräzise an die Größe und Form des Tumors anpassen kann. So wurde beispielsweise am Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg ein Patient mit Speiseröhrenkrebs behandelt, der eine sehr komplizierte Strahlentherapie benötigte.

Bei der Entwicklung von Artiste standen Siemens die Krebskliniken Maastro im niederländischen Maastricht, das DKFZ und das amerikanische Baton Rouge General Hospital zur Seite. Mit deren Hilfe wurden unter anderem die Benutzerfreundlichkeit als auch die Arbeitsabläufe des Systems optimiert. (IN 2008.09.3)

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Weitere Informationen:
http://www.siemens.de/innovation

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Ein Quantensprung in der Herzdiagnostik
22.09.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

nachricht Bypass – Lebensbrücke für das Herz; keine Angst vor der Herz-Operation
21.09.2017 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie