Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

330 Tonnen Hochtechnologie: Herz der Protonentherapieanlage erreicht Dresdner Medizin-Campus

06.02.2013
Zyklotron und Gantry aus Belgien angekommen und mit Spezialtechnik in Neubau an der Schubertstraße gehoben

Mit der Anlieferung des Herzstücks – dem Protonenbeschleuniger (Zyklotron) und der drehbaren, aus Gantry und Nozzle bestehenden Bestrahlungseinrichtung – beginnt der Schlussspurt des Neubaus auf dem Campus der Dresdner Hochschulmedizin.

Die ersten Ärzte und Wissenschaftler werden im Herbst dieses Jahres ihre Arbeit in der weltweit einmaligen Forschungs- und Entwicklungsplattform für innovative Technologien zur Strahlenbehandlung von Krebserkrankungen aufnehmen können. Nachdem die wesentlichen Arbeiten an dem Gebäude abgeschlossen sind, wird nun die hochkomplizierte Technik installiert, um voraussichtlich im Frühjahr 2014 parallel zu den Forschungsvorhaben die ersten Krebspatienten behandeln zu können. Die Trägerinstitutionen der wissenschaftlichen Einrichtung „OncoRay“ – das Universitätsklinikum Carl Gustav Carus, die gleichnamige Medizinische Fakultät der Technischen Universität sowie das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – haben sich mit dem Ziel zusammengeschlossen, eine neue Dimension einer schonenden Strahlentherapie zu erschließen: In Dresden wird dazu in den kommenden Jahren der Einsatz von Protonen in der Krebstherapie patientennah und jenseits kommerzieller Zwänge weiterentwickelt.

In den wenigen Tagen der Anlieferung und des Einbringens von Zyklotron und Gantry ist es möglich, dass eine breite Öffentlichkeit die Bestandteile der Protonentherapieanlage in Augenschein nehmen kann. Die Dimension der High-Tech-Installation des Belgischen Weltmarktführers für Protonentherapieanlagen Ion Beam Applications S.A. (IBA) setzt Maßstäbe: Allein die Gantry, eine zusammengebaut 13 mal 11 Meter messende, 370 Grad drehbare Stahlkonstruktion, wiegt 110 Tonnen.
Über diesen Stahlkoloss legt der gebündelte Protonenstrahl die letzten Meter zum Patienten zurück. Doppelt so schwer ist der am 6. Februar eintreffende und noch am selben Tag auf sein Fundament gesetzte Protonenbeschleuniger. Durch Ihn werden die Partikel auf etwa zwei Drittel der Lichtgeschwindigkeit – das sind ungefähr 180.000 Kilometer in der Sekunde – beschleunigt. Damit der Protonenstrahl auf dem über 50 Meter langen Weg vom Zyklotron über die so genannte Beamline und die Gantry in höchster Präzision zum Patienten gelangt, wird er von über 50 mehrere Tonnen schwere Quadrupol- und Dipolmagneten geleitet. Die auf ein Tausendstel Millimeter genau justierten Magneten stellen die korrekte Form und Richtung des Strahls sicher.

Um den Protonenstrahl zu erzeugen und auf den Weg zum Patienten zu bringen, ist hochkomplexe Computertechnik notwendig, die speziell für die Protonenbeschleunigung konzipiert und produziert wird. Bevor ein Expertenteam diese im Neubau installiert, halten die tonnenschweren Konstruktionen von Gantry und Zyklotron Einzug. Letzteres war mehrere Tage mit einem Schwerlast-Konvoi von Belgien nach Dresden unterwegs, der dabei über 800 Kilometer zurücklegte. Entwickelt und hergestellt wird die Anlage von der IBA, ein Unternehmen, das weltweit bereits 13 im Therapiebetrieb befindliche Protonentherapieanlagen errichtet hat und derzeit zwölf weitere aufbaut.

Dresdner Projekt verbindet Krankenversorgung mit Forschung
Mit der Protonentherapie als innovative Form der Strahlenbehandlung von Krebspatienten bieten das Universitätsklinikum gemeinsam mit der Medizinischen Fakultät und dem HZDR Spitzenmedizin, die derzeit in Deutschland auf universitärem Niveau nur in Heidelberg und demnächst auch in Essen sowie weltweit an rund 30 Krankenhäusern verfügbar ist.
Damit unterstreicht die Dresdner Hochschulmedizin ihre deutschlandweit führende Rolle in der Versorgung von Krebspatienten. Vorteil dieser ersten Protonentherapieanlage Ostdeutschlands ist, dass Patienten dank der vielfältigen und praxisnahen Forschungsprojekte am Dresdner Onco-Ray-Zentrum frühzeitig von weiteren Innovationen dieser noch neuen Therapieform profitieren werden. Das ist ein wesentlicher Grund für Klinikum, Fakultät und HDZR, sich für diese durch die Europäische Union, Bund und Freistaat geförderte Millioneninvestition zu entscheiden. Ziel ist es, den Einsatz der Protonentherapie auf weitere Krebsarten auszuweiten. Derzeit übernehmen die Krankenkassen die Behandlungskosten bei bestimmten Tumoren zum Beispiel im Gehirn und im Bereich des Auges.

Neben der hunderte Tonnen schweren, auf elektromagnetischen Feldern beruhenden Protonen-Beschleunigungsanlage, werden die Wissenschaftler von HZDR und OncoRay im selben Gebäudekomplex eine neue Technologie erproben, durch die der technische Aufwand für die Protonentherapie deutlich sinken wird: Sie nutzen hochenergetische Laserstrahlen, um die Partikel auf die notwendige Geschwindigkeit zu bringen. Ziel ist es, künftig die Kosten für Bau und Unterhalt dieser Therapieanlagen drastisch zu reduzieren. Dies ist die Voraussetzung dafür, dass alle Patienten, die diese schonende Behandlungsform benötigen, auch von ihr profitieren können. Das Nebeneinander eines konventionellen und eines laserbasierten Protonenbeschleunigers wird weltweit einmalig sein – das Dresdner Kompetenzzentrum etabliert sich damit als Referenz- und Kristallisationspunkt weiterer Forschungen auf diesem Gebiet.

Das HZDR ist weltweit führend bei der Erforschung von laserbeschleunigten Protonenstrahlen. Die Rossendorfer Wissenschaftler haben in den letzten Jahren auf diesem Gebiet sehr viel Erfahrung gesammelt und am Hochleistungslaser DRACO zehntausende Male energiereiche Ionenstrahlen mit hochintensivem Laserlicht erzeugt. Jetzt geht es darum, die Energie der Strahlen so zu steigern, dass sie weit genug in den Körper eindringen und Krebszellen zerstören können. Dafür ist ein noch leistungsstärkeres Lasersystem nötig, das das HZDR gegenwärtig entwickelt und am Standort Dresden-Rossendorf aufbauen wird.

Protonen – auf den Tumor fokussierte Kräfte schonen Patienten

Ziel jeder Strahlentherapie ist es, das Tumorgewebe zu zerstören oder so stark zu schädigen, dass es nicht mehr unkontrolliert wächst. Bisher werden hierzu vor allem ultraharte Röntgenstrahlen von Linearbeschleunigern eingesetzt: Die dafür verwendeten Photonen entfalten ihre therapeutische Wirkung jedoch nicht nur im Tumor selbst, sondern bereits auf ihrem Weg durch den Körper zur Krebsgeschwulst und auch dahinter. Protonen dagegen können so einsetzt werden, dass sie auf dem Weg zum Tumor nur wenig Energie abgeben. In dem bösartig veränderten Gewebe dagegen entfalten sie ihre volle Kraft. Den Protonenstrahl können die Therapeuten so formen, dass die Protonen das hinter der Krebsgeschwulst liegende gesunde Gewebe nicht mehr schädigen können. In dieser Hinsicht sind die Protonen in ihrer medizinischen Wirkung den heute standardmäßig eingesetzten Photonen deutlich überlegen. Allerdings gilt es, den medizinischen Gewinn dieser wesentlich teureren Behandlungsform für jede der verschiedenen Tumorarten gegenüber der heutigen Strahlentherapie zu überprüfen. Dies geschieht in aufwändigen, streng kontrollierten klinischen Untersuchungen. Nach aktuellen wissenschaftlichen Erkenntnissen wird die Protonentherapie nur bei einem Teil der Tumorerkrankungen sinnvoll sein.

Bildmaterial auf Anfrage.

Kontakte

OncoRay
c/o Universitätsklinikum Carl Gustav Carus
Pressestelle
Holger Ostermeyer
Telefon 0351 / 458 41 62
Fax: 0351/ 449 210 505
E-Mail: pressestelle@ uniklinikum-dresden.de

Helmholtz-Zentrum Dresden-Rossendorf
Kommunikation und Medien
Dr. Christine Bohnet
Tel.: 0351 / 260 24 50
Fax: 0351 / 260 27 00
E-Mail: c.bohnet@hzdr.de

Holger Ostermeyer | idw
Weitere Informationen:
http://www.hzdr.de
http://www.oncoray.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops