Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zerreißprobe für die Hauptschlagader

22.06.2009
"Center for Biomedical Engineering" (CBME) arbeitet an verbessertem Vorhersagemodell für Aneurysmarupturen

Krankhafte Erweiterungen der Bauchschlagader (Bauchaorten-Aneurysmen), sind wie tickende Zeitbomben: Wenn sie platzen, sterben vier von fünf Betroffene an inneren Blutungen noch bevor sie ein Krankenhaus erreichen. Niemand kann mit Bestimmtheit vorhersagen, wann diese lebensbedrohliche Situation eintritt.

Bei ihrer Entscheidung, ein Bauchaorten-Aneurysma vorsorglich zu operieren, richten sich Chirurgen bisher vor allem nach der Größe des Aneurysmas. Eine differenziertere Entscheidungsgrundlage erarbeiten Gefäßchirurgen der Goethe-Universität jetzt gemeinsam mit Ingenieuren der Fachhochschule Frankfurt: Wie die Forscher in der aktuellen Ausgabe von "Forschung Frankfurt" berichten, sollen Simulationen der Strömungsverhältnisse und der Belastbarkeit des Gewebes dabei helfen, den optimalen Zeitpunkt für eine Operation zu ermitteln.

"Ab einem Durchmesser von fünf Zentimetern muss operiert werden, weil die Rupturgefahr dann exponentiell steigt", weiß Prof. Thomas Schmitz-Rixen, Leiter der Gefäß- und Endovascularchirurgie am Klinikum der Goethe-Universität. Doch die Krankheit hält sich nicht an Regeln, immer wieder reißen auch kleinere Aneurysmen, werden andererseits riesige Aussackungen per Zufall bei Patienten entdeckt, die nie Beschwerden hatten und an ganz anderen Krankheiten starben.

Warum das so ist, versucht Schmitz-Rixen in Kooperation mit Prof. Gerhard Silber, Leiter des Instituts für Materialwissenschaften (IfM) an der Fachhochschule Frankfurt, herauszufinden. Gebündelt wird diese Zusammenarbeit im Frankfurter "Center for Biomedical Engineering" (CBME).

Silber ist Fachmann für die Biomechanik von menschlichem Gewebe. Blutgefäße sind nämlich keine starren Rohre. Sie werden durch die Blutmenge passiv aufgedehnt, können sich aber auch aktiv zusammenziehen. Durch Rauchen, zu fettes Essen, ungenügende Bewegung und zunehmendes Alter verlieren die Gefäße ihre Elastizität und Dehnbarkeit. Zusätzlich verkalken die Arterien, so dass die Durchflussmenge messbar abnimmt. Diese Vorgänge modelliert der Materialwissenschaftler Gerhard Silber im Computer. Denn die Reißfestigkeit der Aortenwand oder die Wandspannung im Aneurysma lassen sich nicht im Patienten messen. Sie könnten aber wichtige Indikatoren dafür sein, wann ein Gefäß zu platzen droht.

Zunächst musste ein Materialgesetz abgeleitet werden, das die Eigenschaften der Aneurysmen treffend beschreibt. Dann wurde aus den Bildern der präoperativen Computer- oder Kernspintomografien (CT/MRT) von Schmitz-Rixens Patienten, die der Radiologe Prof. Thomas Vogl, ein weiterer Partner im CBME, liefert, mit aufwendigen Berechnungen ein biomechanisches Modell eines Aortenaneurysmas erstellt. Bis zu zwei Wochen dauert es, bis der Rechner ein Modell erstellt hat, in dem Viskosität, Strömungsgeschwindigkeit und Wandspannung dargestellt sind. Im nächsten Schritt gehen die Flow-Daten ein, ebenfalls gewonnen aus den präoperativen Bildern. Schließlich ändern sich sämtliche Parameter mit jedem Pulsschlag, dehnt sich das Gefäß aus und erschlafft dann wieder.

Um herauszufinden, ob die Berechnungen und Modelle auch tatsächlich In-vivo-Bedingungen repräsentieren, mussten die Eigenschaften echter aneurysmatischer Gefäße geprüft und charakterisiert werden. Doch auch wenn offen operiert wird, verbleibt das Aneurysma im Körper; mit ihm wird die Prothese ummantelt. Silber bekommt daraus nur ein Gewebestück, das kaum zwei Zentimeter misst. Mithilfe eines eigens von seinen Studenten entwickelten Prüfstandes werden die Gewebeeigenschaften des winzigen Fetzens charakterisiert. "Die Datenfülle, die wir aus der Zusammenarbeit mit Medizinern gewinnen, liefert uns völlig neue Informationen über den menschlichen Körper und seine Fehlfunktionen oder Erkrankungen", erklärt Silber seine Vorliebe für die Biomechanik. Selbst wenn das Forscherduo noch Jahre mit der Aneurysmaforschung beschäftigt sein wird: Schon jetzt ist abzusehen, dass dies nicht ihr einziges gemeinsames Projekt bleiben wird.

Informationen:

Prof. Thomas Schmitz-Rixen,
Leiter der Gefäß- und Endovascularchirurgie, Klinikum Campus Niederursel,
Tel.: (069) 6301-5349; Schmitz-rixen@em.uni-frankfurt.de.
Prof. Gerhard Silber,
Leiter des Instituts für Materialwissenschaften (IfM),
Fachhochschule Frankfurt,
Tel.: 069 / 1533-3035
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Wachablösung im Immunsystem: wie Dendritische Zellen ihre Bewaffnung an Mastzellen übergeben
16.11.2017 | Universitätsklinikum Magdeburg

nachricht Wie Lungenkrebs zur Entstehung von Lungenhochdruck führt
16.11.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antarktisches Meereis: mehr Schutz als Vorratskammer für Krilllarven

22.11.2017 | Ökologie Umwelt- Naturschutz

Europäisches Konsortium baut effizientestes Rechenzentrum der Welt

22.11.2017 | Informationstechnologie

CAU-Wissenschaftlerin erhält EU-Förderung zur Entwicklung neuer Implantate

22.11.2017 | Förderungen Preise