Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirkung von Kanalproteinen auf die Aufrechterhaltung von Körperfunktionen

26.05.2014

Die Universität Leipzig ist an einem Transregio-Sonderforschungsbereich (SFB) "Steuerung der Körperhomöostase durch TRP-Kanal-Module" beteiligt, der von der Deutschen Forschungsgemeinschaft (DFG) neu eingerichtet wurde. Dadurch fließen in den kommenden knapp vier Jahren gut 400.000 Euro Fördergelder in die Forschung am Rudolf-Boehm-Institut für Pharmakologie und Toxikologie.

Bei TRP (transient receptor potential)-Kanälen handelt es sich um eine Familie von Kationenkanälen, die wesentliche Rollen sowohl bei sensorischen Prozessen als auch bei der Regulation und Erhaltung von Körperfunktionen spielen. So sind TRP-Kanäle an der Steuerung von Gefäßtonus, der neuronalen Erregbarkeit und der Regulation der Aufnahme und Verteilung von Kalzium und Magnesium im Körper beteiligt. Besonders bekannt ist TRPV1, ein Hitzerezeptor, der auch den feurig-scharfen Geschmack der Chilischote vermittelt und durch Weitung von Blutgefäßen dazu beiträgt, die Körpertemperatur konstant zu halten.

Leipziger Alleinstellungsmerkmal

Das Rudolf-Boehm-Institut für Pharmakologie und Toxikologie an der Medizinischen Fakultät der Universität Leipzig bringt sich mit einem wissenschaftlichen Projekt zur Identifikation und Anwendung TRP-Kanal-modulierender Wirkstoffe in den Forschungsverbund ein. Sein Direktor Prof. Dr. Michael Schaefer führt die Beteiligung auf ein Alleinstellungsmerkmal in seinem Haus zurück: "Wir haben eine spezielle Expertise entwickelt, mittels Hochdurchsatzverfahren und Anwendung von Substanzbibliotheken neue, biologisch aktive Wirkstoffe zu identifizieren. Diese Moleküle können eingesetzt werden, um durch akute Regulation der Kanalfunktion weitere Informationen über deren biologische Funktionen zu erhalten, sie können aber auch als Vorläufer späterer Medikamente dienen."

400.000 Euro Förderung

Eine gesteigerte oder mangelnde Aktivität von TRP-Kanälen kann in verschiedenen Organsystemen zu Erkrankungen führen. Die Wissenschaftler suchen nach neuen Therapieansätzen, um steuernd in solche Prozesse einzugreifen. Die Erkenntnisse des neuen SFB sind grundlegend notwendig, um neue Wirkstoffe und Medikamente zu entwickeln. Das Leipziger Team kann für seine Aufgaben bereits in der ersten Förderperiode mit gut 400.000 Euro rechnen.

Die Deutsche Forschungsgemeinschaft (DFG) hat bundesweit insgesamt 13 neue Sonderforschungsbereiche eingerichtet und fördert sie mit insgesamt 93,1 Millionen Euro. Vier der eingerichteten Verbünde sind sogenannte SFB/Transregio, die sich auf mehrere Forschungsstandorte verteilen. Die Sprecherfunktion des SFB/Transregio 152 zu TRP-Kanal-Modulen hat die Universität München inne, die weiteren Standorte sind Freiburg, Homburg und Heidelberg.


Weitere Informationen:

Prof. Dr. Michael Schaefer
Rudolf-Boehm-Institut für Pharmakologie und Toxikologie
Telefon: +49 341 97-24600
E-Mail: michael.schaefer@medizin.uni-leipzig.de
Web: www.uni-leipzig.de/~pharma

Diana Smikalla | Universität Leipzig

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie