Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtige Signale für die gezielte Entwicklung und Regeneration von Betazellen identifiziert

04.05.2012
Eine internationale Kooperation von Wissenschaftlern zeigt in ihrer heute beim renommierten Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlichten Studie, dass der Notch-Signalweg für die Bildung von Insulin-produzierenden Betazellen essentiell ist. Daraus ergeben sich neue Ansatzpunkte für die Betazell-Ersatztherapie und die Regeneration der Langerhans’schen Inseln bei der Volkskrankheit Diabetes mellitus.

Wissenschaftler zeigen in der aktuellen Ausgabe des renommierten Fachjournals PNAS (Proceedings of the National Academy of Sciences), dass Mindbomb1, ein Regulator für den Notch-Signalweg*, entscheidend ist für die physiologisch korrekte Entwicklung der Betazellen während der Embryonalentwicklung.

Damit geht die Bedeutung des Notch-Signalweges über die reine Aufrechterhaltung der Vorläuferzellen deutlich hinaus. Die Befunde sind essentiell, in vitro Differenzierung von Betazellen aus ihren Vorläufern zu ermöglichen und so zukünftig Zellersatztherapien bei Diabetikern zu entwickeln oder die Neubildung von Betazellen beim Erwachsenen wieder anzuregen.

Die Arbeiten entstanden in Kooperation des Dänischen Stammzellzentrums mit NovoNordisk, außerdem waren die amerikanische Vanderbilt-Universität, die japanische Universität Kyoto, die koreanische Universität in Seoul und das Helmholtz Zentrum München beteiligt.

Prof. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung des Helmholtz Zentrums München, leistete mit seinem Team einen erfolgskritischen Beitrag: Hier gelang es, eine Mauslinie zu generieren, bei der bedarfsabhängig der Notch-Signalweg im Pankreas ausgeschaltet werden kann. Durch das gezielte Ab- und Anschalten von Genen während der Organentwicklung können die Wissenschaftler detailliert untersuchen, welche Signale und Faktoren die Entwicklung der Betazelle regulieren. Dadurch wird das Modell auch über die aktuelle Studie hinaus dazu beitragen, konkrete medizinische Fortschritte im Bereich der regenerativen Medizin zu erzielen: „Unsere Erkenntnisse sind ein wichtiger Schritt, um die Entstehung neuer Betazellen anregen zu können und damit auf lange Sicht Zell-Ersatztherapien und die Wiederherstellung der Betazellen bei Diabetikern zu ermöglichen“, sagt Lickert.

Das Verständnis der Entstehungsmechanismen von Volkskrankheiten und die Ableitung neuer Angriffspunkte für Diagnose, Therapie und Prävention ist Ziel des Helmholtz Zentrums München.

Typ-2-Diabetes ist eine Erkrankung des Glukosestoffwechsels, bei der die Betazellen der Bauchspeicheldrüse entweder absterben, nicht mehr ausreichend Insulin produzieren oder das Insulin im Körper nicht mehr wirken kann. Diabetiker mit unzureichender Insulin-Produktion werden durch medikamentöse Gabe des Hormons behandelt. Allein in Deutschland ist Diabetes derzeit bei mindestens sieben Prozent der Bevölkerung bekannt, das entspricht fast sechs Millionen Menschen. Studien zur Dunkelziffer des Diabetes legen nahe, dass darüber hinaus mehrere Millionen Männer und Frauen in Deutschland an einem noch nicht diagnostizierten Diabetes leiden.

Weitere Informationen

Hintergrund
* Der Notch-Signalweg steuert wichtige Vorgänge in der Embryonalentwicklung von Säugetieren und dem Menschen. Unter anderem ist er beteiligt an der Bildung der pankreatischen Betazelle.
Original-Publikation:
Horn S. et al.(2012) Mind bomb 1 is required for pancreatic β-cell formation, PNAS April 23, 2012, doi: 10.1073/pnas.1203605109
Link zur Fachpublikation http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 1.900 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 31.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V.. http://www.helmholtz-muenchen.de
Ansprechpartner für die Medien:
Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3946 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner:
Prof. Dr. Heiko Lickert, Institut für Diabetes- und Regenerationsforschung, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3760 - Fax: 089-3187-3761 - E-Mail: heiko.lickert@helmholtz-muenchen.de

Susanne Eichacker | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/
http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

nachricht Tempo-Daten für das „Navi“ im Kopf
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie