Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wichtige Signale für die gezielte Entwicklung und Regeneration von Betazellen identifiziert

04.05.2012
Eine internationale Kooperation von Wissenschaftlern zeigt in ihrer heute beim renommierten Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlichten Studie, dass der Notch-Signalweg für die Bildung von Insulin-produzierenden Betazellen essentiell ist. Daraus ergeben sich neue Ansatzpunkte für die Betazell-Ersatztherapie und die Regeneration der Langerhans’schen Inseln bei der Volkskrankheit Diabetes mellitus.

Wissenschaftler zeigen in der aktuellen Ausgabe des renommierten Fachjournals PNAS (Proceedings of the National Academy of Sciences), dass Mindbomb1, ein Regulator für den Notch-Signalweg*, entscheidend ist für die physiologisch korrekte Entwicklung der Betazellen während der Embryonalentwicklung.

Damit geht die Bedeutung des Notch-Signalweges über die reine Aufrechterhaltung der Vorläuferzellen deutlich hinaus. Die Befunde sind essentiell, in vitro Differenzierung von Betazellen aus ihren Vorläufern zu ermöglichen und so zukünftig Zellersatztherapien bei Diabetikern zu entwickeln oder die Neubildung von Betazellen beim Erwachsenen wieder anzuregen.

Die Arbeiten entstanden in Kooperation des Dänischen Stammzellzentrums mit NovoNordisk, außerdem waren die amerikanische Vanderbilt-Universität, die japanische Universität Kyoto, die koreanische Universität in Seoul und das Helmholtz Zentrum München beteiligt.

Prof. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung des Helmholtz Zentrums München, leistete mit seinem Team einen erfolgskritischen Beitrag: Hier gelang es, eine Mauslinie zu generieren, bei der bedarfsabhängig der Notch-Signalweg im Pankreas ausgeschaltet werden kann. Durch das gezielte Ab- und Anschalten von Genen während der Organentwicklung können die Wissenschaftler detailliert untersuchen, welche Signale und Faktoren die Entwicklung der Betazelle regulieren. Dadurch wird das Modell auch über die aktuelle Studie hinaus dazu beitragen, konkrete medizinische Fortschritte im Bereich der regenerativen Medizin zu erzielen: „Unsere Erkenntnisse sind ein wichtiger Schritt, um die Entstehung neuer Betazellen anregen zu können und damit auf lange Sicht Zell-Ersatztherapien und die Wiederherstellung der Betazellen bei Diabetikern zu ermöglichen“, sagt Lickert.

Das Verständnis der Entstehungsmechanismen von Volkskrankheiten und die Ableitung neuer Angriffspunkte für Diagnose, Therapie und Prävention ist Ziel des Helmholtz Zentrums München.

Typ-2-Diabetes ist eine Erkrankung des Glukosestoffwechsels, bei der die Betazellen der Bauchspeicheldrüse entweder absterben, nicht mehr ausreichend Insulin produzieren oder das Insulin im Körper nicht mehr wirken kann. Diabetiker mit unzureichender Insulin-Produktion werden durch medikamentöse Gabe des Hormons behandelt. Allein in Deutschland ist Diabetes derzeit bei mindestens sieben Prozent der Bevölkerung bekannt, das entspricht fast sechs Millionen Menschen. Studien zur Dunkelziffer des Diabetes legen nahe, dass darüber hinaus mehrere Millionen Männer und Frauen in Deutschland an einem noch nicht diagnostizierten Diabetes leiden.

Weitere Informationen

Hintergrund
* Der Notch-Signalweg steuert wichtige Vorgänge in der Embryonalentwicklung von Säugetieren und dem Menschen. Unter anderem ist er beteiligt an der Bildung der pankreatischen Betazelle.
Original-Publikation:
Horn S. et al.(2012) Mind bomb 1 is required for pancreatic β-cell formation, PNAS April 23, 2012, doi: 10.1073/pnas.1203605109
Link zur Fachpublikation http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 1.900 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 31.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V.. http://www.helmholtz-muenchen.de
Ansprechpartner für die Medien:
Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3946 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner:
Prof. Dr. Heiko Lickert, Institut für Diabetes- und Regenerationsforschung, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3760 - Fax: 089-3187-3761 - E-Mail: heiko.lickert@helmholtz-muenchen.de

Susanne Eichacker | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/
http://www.pnas.org/content/early/2012/04/18/1203605109.abstract

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics