Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wahl zwischen zwei Übeln

08.06.2012
Multiple Sklerose stellt Wissenschaftler noch immer vor viele Rätsel. Bei der Suche nach den Auslösern der Krankheit sind Forscher der Universität Würzburg jetzt einen Schritt weitergekommen. Sie zeigen: Um größeren Schaden zu vermeiden, nimmt das Gehirn das kleinere Übel in Kauf.

Die „Krankheit mit 1000 Gesichtern“: So wird Multiple Sklerose (MS) bisweilen bezeichnet. Verantwortlich für diesen Namen ist die Tatsache, dass das Krankheitsbild sich von Patient zu Patient gewaltig unterscheiden kann – sowohl was den Verlauf betrifft als auch die Beschwerden.

Dabei zeigt sich allerdings bei allen der prinzipiell gleiche Befund: Multiple Sklerose ist eine Autoimmunerkrankung, bei der ein bestimmter Zelltyp des Gehirns, die so genannten Oligodendrozyten, vom Immunsystem zerstört werden. Oligodendrozyten bilden eine Isolierschicht um die Fortsätze der Nervenzellen, die für eine effiziente Reizleitung notwendig ist.

Ist diese Reizleitung als Folge von Schäden in der Isolierschicht gestört, können die Nerven die jeweiligen „Botschaften“ nicht so wirkungsvoll übertragen wie zuvor. Wer an Multipler Sklerose erkrankt, verspürt deshalb häufig ein Kribbeln in den Extremitäten. Die Betroffenen stolpern vermehrt oder bekommen Schwierigkeiten beim Sehen. Im Extremfall sind sie gar nicht mehr in der Lage, sich aus eigener Kraft fortzubewegen und sind auf den Rollstuhl angewiesen. Nach Angaben der Deutschen Multiple Sklerose Gesellschaft sind weltweit rund 2,5 Millionen Menschen von MS betroffen. In Deutschland leben nach derzeitigen Hochrechnungen etwa 130.000 Erkrankte; jährlich trifft etwa 2.500 Menschen die Diagnose.

Killer-T-Zellen stehen als Auslöser unter Verdacht

Wie es zum Ausbruch der Krankheit kommt, ist noch nicht bis ins letzte Detail geklärt. „Auf Grund der Untersuchung von Gehirnen verstorbener MS-Patienten vermutet man schon lange, dass ein bestimmter Lymphozytentyp, die Killer-T-Zellen, an der Zerstörung der Oligodendrozyten beteiligt sind“, sagt Professor Thomas Hünig vom Institut für Virologie und Immunbiologie der Universität Würzburg. Gemeinsam mit Wissenschaftlern aus Köln und Dresden haben Hünig und seine Mitarbeiterin Dr. Shin-Young Na sich jetzt diesen Vorgang genauer angeschaut und dabei eine überraschende Entdeckung gemacht. Die Fachzeitschrift Immunity berichtet in ihrer aktuellen Ausgabe darüber. Demnach lässt das Gehirn den Angriff der T-Zellen auf die Myelinscheide unter bestimmten Voraussetzungen selbst zu – weil es damit möglicherweise einen größeren Schaden für den Betroffenen verhindern kann.

Auch wenn die Befunde aus den Gehirnen verstorbener MS-Patienten für eine starke Beteiligung der Killer-T-Zellen sprachen, gab es für die Wissenschaftler bisher ein Problem damit: „In Tierversuchen, die für die Entwicklung neuer therapeutischer Strategien unerlässlich sind, konnte der Killer-T-zellvermittelte Angriff auf die Nervenscheiden bisher nicht überzeugend dargestellt werden“, erklärt Hünig. Deshalb hat die Forschergruppe ihre Suche etwas komplizierter gestaltet. Dazu infizierte sie Mäuse im Labor mit einer bestimmten Bakterienart – Listerien –, die ein Protein mit den Oligodendrozyten teilen, und beobachtete die Folgen, wenn diese Infektion in der Körperperipherie erfolgte oder wenn sie auf das Gehirn begrenzt war.
Das Gehirn entscheidet

Das Ergebnis: „Bei einer Infektion in der Peripherie suchen die Killerzellen im gesamten Körper nach dem Erreger, also auch im Gehirn“, sagt Hünig. Allerdings ist das Immunsystem in diesem Fall in der Lage, diejenigen Killerzellen zu erkennen, die Myelinscheiden fälschlicherweise als etwas Fremdes bewerten, weil sie das mit den Listerien gemeinsame Protein erkennen, und deshalb angreifen. Es wehrt diese ab und zerstört sie. Anders der Ablauf, wenn die Infektion im Gehirn selbst vorliegt: „Dann wird der Angriff zugelassen, und es kommt zur Zerstörung der schützenden Myelinscheide und zur Ausbildung von Plaques, wie man sie bei der Multiplen Sklerose sieht“, so der Wissenschaftler.

Eine Art „Güterabwägung“ scheint für den unterschiedlichen Verlauf verantwortlich zu sein. Die „Entscheidung“ des Gehirns, den Angriff zuzulassen, dient der Bekämpfung des Erregers. Dabei gilt anscheinend das Motto: Besser, es werden einige infizierte Zellen zerstört und es kommt zu einer Entmarkung von Nervenzellfortsätzen, als dass sich der Erreger ausbreiten und somit zum Tod des Erkrankten führen kann. Liegt jedoch keine Infektion mit bedrohlichen Erregern vor, „erkennt“ das Gehirn, dass es sich um einen fehlgeleiteten Angriff der Killer-T-Zellen handelt, und zerstört diese. Möglicherweise „überschätzt“ das Gehirn aber bisweilen auch die Gefährlichkeit eines mikrobiellen Erregers und opfert ohne Not die schützende Myelinscheide.

Die nächsten Schritte

„Diese Befunde könnten die Grundlage für zukünftige Therapien bilden, die die Bekämpfung von mikrobiellen Erregern im Gehirn sowie die Dämpfung der von ihnen ausgehenden lokalen Entzündung in den Mittelpunkt stellen“, hofft Hünig. Nachdem viele Wissenschaftler davon überzeugt sind, dass Viren bestimmte Formen der Multiplen Sklerose auslösen können, hält er es für sinnvoll, in dieser Richtung weiter zu forschen.

Oligodendrocytes Enforce Immune Tolerance of the Uninfected Brain by Purging the Peripheral Repertoire of Autoreactive CD8+ T Cells; Shin-Young Na, Andreas Hermann, Monica Sanchez-Ruiz, Alexander Storch, Martina Deckert and Thomas Hünig; Immunity, Published online: June 7

Kontakt
Prof. Dr. Thomas Hünig, Lehrstuhl für Immunologie, T: (0931) 201-49951,
E-Mail: huenig(at)vim.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics