Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorhofflimmern – schonend zurück in den Tak

14.07.2011
Forscher entwickeln neues Verfahren zur Niedrig-Energie-Defibrillation

Eine neue Methode, Herzflimmern schonend und schmerzfrei zu behandeln, hat ein Forscherteam unter Leitung von Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen und der Cornell University in Ithaca, USA, entwickelt.


Herzflimmern. Drei mit kurzem zeitlichem Abstand aufeinanderfolgende Momentaufnahmen von raum-zeitlich chaotischer Erregung des Herzens. Dieser Zustand ungeordneter, elektrischer Erregung kann zum Erliegen der Pumpfunktion des Herzens und zum plötzlichen Herztod führen. LEAP erlaubt die schonende und schmerzfreie Beendigung dieses lebensgefährlichen Zustandes. Bildausschnitt: 6 x 6 cm2. Bedeutung der Farben: schwarz = ruhend, gelb = erregt. MPI für Dynamik und Selbstorganisation

Erstmals konnten die Forscher am Tiermodell zeigen, dass eine Abfolge niedrig-energetischer elektrischer Pulse Vorhofflimmern erfolgreich beenden kann. Dabei kommt die so genannte Niedrig-Energie-Defibrillation mit etwa 84 Prozent weniger Energie aus als die herkömmliche Defibrillation.

An der neuen Studie waren auch Wissenschaftler der Universitätsmedizin Göttingen, des Rochester Institute of Technology, der Ecole Normale Supérieure de Lyon und des Laboratoire Non-Linéaire de Nice maßgeblich beteiligt.

In einem gesunden Herzen steuern elektrische Impulse, die sich geordnet entlang des Herzmuskels ausbreiten, die mechanische Pumpaktivität des Organs: In regelmäßigem Takt ziehen sich Herzkammern und Vorhöfe zusammen und erschlaffen danach wieder. Bei Menschen, die unter Herzrhythmusstörungen leiden, funktioniert dies nicht zuverlässig. Die elektrischen Signale breiten sich chaotisch in spiralförmigen Wellen im Herzen aus, unterbinden den regelmäßigen Herzschlag und verhindern so, dass der Körper adäquat mit Blut versorgt wird. Etwa ein bis zwei Millionen Menschen in Deutschland sind vom so genannten Vorhofflimmern betroffen.

Für Patienten, bei denen Vorhofflimmern auftritt, gibt es die Möglichkeit der Defibrillation, auch Kardioversion genannt. Ein starker elektrischer Puls, den die Betroffenen als schmerzhaft empfinden und der das umliegende Gewebe schädigen kann, bringt das Herz zurück in den gewohnten Takt. Aufgrund der Schmerzhaftigkeit wird die Defibrillation in der Regel während einer kurzen Narkose durchgeführt. Die Forscher um Stefan Luther vom Max-Planck-Institut für Dynamik und Selbstorganisation und Flavio H. Fenton von der Cornell University setzen nun auf eine andere Methode: die Niedrig-Energie-Defibrillation.

Mit Hilfe eines Herzkatheters erzeugen die Forscher eine Abfolge von fünf vergleichsweise schwachen elektrischen Pulsen im Herzen. „Wenige Sekunden später schlägt das Herz wieder regelmäßig“, beschreibt Luther die jüngsten Ergebnisse. Die Energiemenge, die dem Herzen in Form von elektrischen Pulsen zugeführt wird, lässt sich im Vergleich mit der herkömmlichen Methode so um 84 Prozent verringern.

Obwohl beide Verfahren auf den ersten Blick ähnlich funktionieren, lösen sie innerhalb des Herzens völlig verschiedene Prozesse aus. „Der klassische Defibrillator legt auf einen Schlag alle Zellen des Organs gleichzeitig lahm“, erklärt Robert F. Gilmour von der Cornell University. Für einen kurzen Moment können sie keinerlei elektrische Signale weiterleiten; die lebensbedrohlichen, chaotischen Wellen werden unterbunden. Danach kehrt das Herz in seinen gewohnten, gesunden Takt zurück – wie ein Computer, den man kurz aus- und wieder einschaltet.

Das neue Verfahren beendet die chaotischen Wellen im Herzen hingegen Schritt für Schritt. „Unsere wichtigsten Helfer dabei sind natürliche Inhomogenitäten im Herzen wie etwa Fettgewebe, Blutgefäße oder Bindegewebe“, erklärt Eberhard Bodenschatz, Direktor am Max-Planck-Institut. In Experimenten und Simulationen konnten die Forscher zeigen, dass diese Inhomogenitäten Ausgangspunkte für geordnete Wellen sein können. „Recht schwache elektrische Signale reichen aus, um die Zellen an diesen Stellen anzuregen, wieder „normale“ Wellen auszusenden“, erklärt Fenton. Mit jedem Puls werden mehr Inhomogenitäten aktiviert, so dass sie die chaotischen Wellen nach und nach verdrängen und das gesamte Organ wieder in den richtigen Takt versetzen.

Grundsätzlich lassen sich die Ergebnisse auch auf die Defibrillation von Kammerflimmern übertragen, eine lebensbedrohliche Rhythmusstörung, die durch einen internen oder externen Defibrillator beendet werden kann. Für viele Patienten mit implantiertem Cardioverter-Defibrillator könnte die neue Technik Schmerzen vermindern, die Erfolgsrate der Behandlung erhöhen und die Batterielebensdauer verlängern und damit die Häufigkeit des chirurgischen Geräteaustausches reduzieren.

„Die Niedrig-Energie-Defibrillation ist eine bahnbrechende Entwicklung und ein hervorragendes Beispiel einer erfolgreichen Kooperation zwischen Grundlagenwissenschaftlern und Klinikern mit unmittelbarer Bedeutung für die Entwicklung neuer Therapieverfahren“, sagt Markus Zabel, Leiter der Klinischen Elektrophysiologie der Abteilung Kardiologie und Pneumologie der Universitätsmedizin Göttingen. „Wir arbeiten intensiv daran, diese neu Technik so schnell wie möglich zur Behandlung unserer Patienten einsetzen zu können“, ergänzt Gerd Hasenfuss, Vorsitzender des Herzzentrums der Universitätsmedizin Göttingen.

Diese Forschung wurde finanziert durch die Max Planck Gesellschaft, durch das Bundesministerium für Bildung und Forschung (FKZ 01EZ0905/6) und im Rahmen des European Community's Seventh Framework Programme FP7/2007–2013, HEALTH-F2-2009-241526 (EUTrigTreat).

Kontakt:

Dr. Birgit Krummheuer
Press Office
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668
Prof. Stefan Luther
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-370
E-Mail: stefan.luther@ds.mpg.de
E-Mail: birgit.krummheuer@ds.mpg.de
Dr. Flavio Fenton
Department of Biomedical Sciences/Cornell University
Telefon: +1 516 672-6003
E-Mail: flavio.h.fenton@cornell.edu
Prof. Dr. Markus Zabel
Abteilung Kardiologie und Pneumologie - Herzzentrum Göttingen
Universitätsmedizin Göttingen, Georg-August-Universität
Telefon: +49 551 39-10265
E-Mail: markus.zabel@med.uni-goettingen.de
Originalpublikation:
Stefan Luther, Flavio H. Fenton, Bruce G. Kornreich, Amgad Squires, Philip Bittihn, Daniel Hornung, Markus Zabel, James Flanders, Andrea Gladuli, Luis Campoy, Elizabeth M. Cherry, Gisa Luther, Gerd Hasenfuss, Valentin I. Krinsky, Alain Pumir, Robert F. Gilmour Jr., Eberhard Bodenschatz:
Low-energy Control of Electrical Turbulence in the Heart
Nature, 14 July 2011

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Aktuelle Therapiepfade und Studienübersicht zur CLL
20.10.2017 | Kompetenznetz Maligne Lymphome e.V.

nachricht Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt
18.10.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise