Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viele Nanopartikel erhitzen den Tumor?

28.07.2010
Physiker der PTB wollen gemeinsam mit Bio-Medizinern aus Jena die Tumortherapie durch Wärmebehandlung verbessern

Wer einen mächtigen Feind bekämpfen will, muss sich Verbündete suchen. Darum haben sich Physiker verschiedener Fachrichtungen mit Bio-Medizinern zusammengetan, um die Bekämpfung von Krebs durch Wärmebehandlung mittels magnetischer Nanopartikel auf eine solide, wissenschaftliche Basis zu stellen.

Ziel ist, den Therapieerfolg zu verbessern. Melanie Kettering vom Institut für Diagnostische und Interventionelle Radiologie (IDIR), Universitätsklinikum Jena, und Heike Richter von der Physikalisch-Technischen Bundesanstalt (PTB) haben innerhalb eines durch die Deutsche Forschungsgemeinschaft geförderten Gemeinschaftsprojekts die Aufgabe nachzuweisen, wo sich wie viele magnetische Nanopartikel im Körper des Patienten befinden. Injiziert werden sie in den Tumor, doch bleiben sie dort auch oder verteilen sie sich im Körper? Das Wissen um die Menge im Tumor ist wichtig für den Erfolg der Wärmebehandlung.

Die Wissenschaftlerinnen konnten nun erfolgreich an Mäusen zeigen, dass sich die Magnetrelaxometrie als Verfahren eignet, um die Wärmebehandlung zu begleiten. Sie liefert Informationen über den Verbleib der Nanopartikel im Körper – völlig berührungsfrei für den Patienten.

Für die Krebstherapie mittels Wärmebehandlung werden magnetische Nanopartikel in den Tumor injiziert und durch ein äußeres elektromagnetisches Wechselfeld angeregt. Dadurch erzeugen die magnetischen Nanopartikel innerhalb des Tumors Wärme. Werden Temperaturen zwischen 55 °C und 60 °C erreicht, können Krebszellen irreversibel zerstört werden. Das umgebende gesunde Gewebe (ohne magnetische Nanopartikel) bleibt unbeeinflusst. Noch hat das Verfahren keinen Einzug in die klinische Routine gefunden, sondern befindet sich in der Erprobungsphase, da noch eine Reihe von Fragen zu klären sind. Unter anderem braucht man ein Verfahren, das zeigt, wo sich die Nanopartikel im Körper befinden und in welcher Menge sie dort vorliegen. Auf dieser Basis lässt sich die gezielte Behandlung des Tumors erreichen. PTB-Wissenschaftler haben festgestellt, dass sich die Magnetrelaxometrie sehr gut eignet, um diese Informationen zu gewinnen – ohne den Körper des Patienten auch nur zu berühren oder anderweitig zu belasten.

Dies geschieht noch vor der eigentlichen Behandlung auf folgende Weise: Die in den Tumor injizierten Eisenoxid-Nanopartikel sind superparamagnetisch, d.h. sie sind kleine magnetische Partikel, die ihre Magnetisierungsrichtung unabhängig voneinander verändern können. Bei Raumtemperatur ist ihre Ausrichtung im Raum statistisch verteilt, sodass sie in ihrer Summe kein magnetisches Moment bilden. Legt man nun ein äußeres konstantes Magnetfeld an, richten sie sich im Raum entlang des Feldes alle gleich aus und erzeugen ein von außen messbares magnetisches Moment. Dann wird das Magnetfeld abgeschaltet und extrem zeitnah mit sensiblen Magnetfeldsensoren, sogenannten SQUIDs (Superconducting QUantum Interference Devices, Supraleitende Quanteninterferenzeinheiten) die nun folgende Relaxation der Magnetisierung ermittelt, also die Rückkehr des magnetischen Moments von der einheitlichen Ausrichtung hin zu einem Zustand mit einer statistischen Verteilung. Die Amplitude des Relaxationssignals gibt dann Auskunft über die Menge der Partikel.

Die bisherigen Untersuchungen an Mäusen lassen den Schluss zu, dass die Injektion von magnetischen Nanopartikeln und der Verbleib der Partikel am Ort unterschiedlich gut funktionieren. In manchen Tumoren konnten die Wissenschaftlerinnen 24 Stunden nach der Injektion die nahezu komplette Menge Nanopartikel im Krebsgeschwür finden, während in anderen Tumoren nur noch drei Viertel der injizierten Partikel nachgewiesen werden konnten. Für diese unterschiedliche Quantität der magnetischen Nanopartikel im Tumor gibt es bisher keine fundierte Erklärung. Doch das Ergebnis zeigt umso mehr, wie wichtig es ist, die Wärmebehandlung von Krebs durch Nanopartikel mit der Magnetrelaxometrie zu begleiten, um Aussagen über die Menge der Partikel im Tumor machen zu können. (ptb/if)

Ansprechpartnerin:
Dr. Heike Richter, Arbeitsgruppe 8.21 Biomagnetismus, Tel.: (030) 3481-7736,
E-Mail: heike.richter@ptb.de
Originalveröffentlichung:
Richter, H.; Kettering, M.; Wiekhorst, F. et al. (2010) Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys Med Biol 55, 623-633
Imke Frischmuth
Presse- und Öffentlichkeitsarbeit
Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
38116 Braunschweig
Tel. 0531-592-9323
Fax 0531-592-3008
E-Mail: imke.frischmuth@ptb.de

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie