Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veredelte Schläuche verhindern die Thrombosegefahr

22.03.2011
Wenn sich Herzgefäße durch Ablagerungen in den Adern verengen, können Adern verstopfen – eine Thrombose bildet sich aus. Sie kann zum Herzinfarkt führen.

Künstliche kleine Schläuche in den Adern, sogenannte stents, erweitern die Adern. Dadurch ist der Blutfluss wieder ungehindert möglich. Auch an diesen Schläuchen lagern sich nach einiger Zeit wieder Zellen und Blutbestandteile ab – das Gefäß verengt sich erneut.


Implantate in der Plasmakammer
Foto: © Bellhäuser

Saarbrücker Forscher untersuchen nun in einem internationalen Verbundprojekt, wie sie die Oberfläche dieser Schläuche so verändern, dass sich ungewünschte Bestandteile dort nicht mehr anlagern können.

Unter der Federführung des INM – Leibniz-Institut für Neue Materialien arbeiten Forscher an Beschichtungsverfahren, die die Schlauchwände glätten und für den Körper gut verträglich machen. Das Kick-off-Meeting des Verbundprojektes Nano4stent fand Anfang des Jahres am INM statt.

Dort trafen sich die Verbundpartner des INM, der Universitätsklinik Homburg, der Kocaeli University, Türkei, sowie der Korea University of Technology and Education, Korea. Das Verbundprojekt Nano4stent wird im Rahmen des internationalen Kooperationsnetzwerks KORANET von der EU gefördert.

Die Spezialisten am INM verwenden bei ihrer Forschung ein spezielles Verfahren: So wie sich Wasserdampf am kalten Topfdeckel in Tropfen gleichmäßig bildet, bilden die Entwickler die Beschichtung auf der Schlauchoberfläche. „Unser Ziel ist es, die Oberfläche der Schläuche ganz gleichmäßig mit einer Schutzschicht zu überziehen“, erklärt Cenk Aktas, Leiter des Programmbereichs „CVD/Biooberflächen“. Dafür wird die Oberfläche erst künstlich durch Laserbehandlung mit kleinen Mulden versehen. Wenn jede Mulde und die gesamte Oberfläche der Schläuche perfekt ausgekleidet sind, haben unerwünschte Bestandteile keine Chance mehr, mit der Oberfläche des Schlauches zu reagieren und dort anzuhaften.

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurswissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung folgen sie den wiederkehrenden Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Ansprechpartner:
Dr. Cenk Aktas
INM – Leibniz-Institut für Neue Materialien gGmbH
Tel.: +49 681 9300 140
e-mail: cenk.aktas@inm-gmbh.de

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics