Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Uranium exposure linked to increased lupus rate

14.11.2012
People living near a former uranium ore processing facility in Ohio are experiencing a higher than average rate of lupus, according a new study conducted by scientists at the University of Cincinnati and Cincinnati Children's Hospital Medical Center.

Lupus is a chronic inflammatory disease that can affect the skin, joints, kidneys, lungs, nervous system and other organs of the body. The underlying causes of lupus are unknown, but it is usually more common in women of child-bearing age.

For this new study, a collaborative team of UC and Cincinnati Children's researchers wanted to compare lupus rates between people who were exposed to uranium and those who were not in an effort to explain the high number of lupus cases reported in a Cincinnati community.

Extensive review of medical records and serum antibody analysis to verify the cases, concluded that people who were exposed to higher levels of uranium, based on their living proximity to a former uranium ore processing plant, had lupus rates four times higher than the average population.

"Former studies have suggested that people with lupus may be more sensitive to radiation and that both genetics and environmental exposures play a role in disease development. Our study shows a strong correlation between uranium exposure, a radioactive substance, and an increased lupus rate that merits further investigation," says Pai-Yue Lu, MD, a pediatric rheumatology fellow at Cincinnati Children's and lead researcher for the study.

"With more research in this area, we may gain additional insight on the types of environmental factors that contribute to lupus development and the mechanisms by which they work," Lu adds. "There could be other effects of uranium and related exposures that could contribute to or help explain our findings."

Lu is presenting this finding and its potential implication at the American College of Rheumatology Annual Scientific Meeting Monday, Nov. 12, in Washington, D.C. She completed the project as part of her master's degree in clinical and translational science training at UC.

The Cincinnati-based team's research is based on nearly two decades of data collected through the Fernald Medical Monitoring Program, the United States' first and largest legally mandated comprehensive medical monitoring program. The program was established in 1990 after a federal investigation revealed that National Lead of Ohio's Feed Materials Production Center in the Hamilton County, Ohio, community of Fernald, was emitting dangerous levels of uranium dust and gases into the surrounding communities.

"The availability of this cohort and carefully collected data and biospecimens provides a great setting to ask research questions," says Susan Pinney, PhD, UC professor of environmental health and principal investigator of the Fernald study.

Almost 10,000 community residents enrolled in the Fernald Medical Monitoring Program. Community residents were classified into several exposure groups: high exposure, moderate exposure, low exposure and no exposure. (Uranium plant workers were not part of this study.)

"Typical U.S. incidence rates for lupus are 1.8 to 7.6 cases per 100,000. Among the 25 confirmed lupus cases we identified through the Fernald community cohort, 12 were in the high exposure group, eight with moderate exposure and five in the low exposure group," says Lu.

Research was supported by a pilot grant from a Center for Environmental Genetics, a National Institute of Environmental Health Sciences-funded program to support core facilities and technologies needed to conduct innovative research that focuses on how environmental agents interact with genetic and epigenetic factors to influence disease risk and outcome. Shuk-mei Ho, PhD, Jacob A. Schmidlapp Chair and Professor of Environmental Health, serves as principal investigator of the CEG grant.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Portable finger-probe device can successfully measure liver function in potential organ donors
29.05.2015 | University of California - Los Angeles Health Sciences

nachricht Project start: New active substance targeting dreaded hospital pathogens
29.05.2015 | Deutsches Zentrum für Infektionsforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Szenario 2050: Ein Wurmloch in Big Apple

Andy ist Physiker und wohnt in New York. Obwohl er schon seit fünf Jahren im Big Apple arbeitet, ist ihm die Stadt immer noch fremd – zu laut, zu hektisch, zu schmutzig. Wie soll das in Zukunft weitergehen? Die Antwort erfährt er prompt – und am eigenen Leib.

„New York – die Stadt, die niemals schläft.“ Lieber Franky Boy Sinatra, ich bin ganz bei Dir. Schon 1977 hattest du mit deinem Song ganz recht. Einen wichtigen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

13. Koblenzer eLearning Tage

28.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien: „Fangarme“ ermöglichen DNA-Transfer

29.05.2015 | Biowissenschaften Chemie

Fit für den Beruf

29.05.2015 | Bildung Wissenschaft

Superelastische Metalle ohne Ermüdung: Kieler Forschende entwickeln neues intelligentes Material

29.05.2015 | Materialwissenschaften