Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Traumatic brain injury patients, supercomputer simulations studied to improve helmets

15.11.2012
Researchers at Sandia National Laboratories and the University of New Mexico are comparing supercomputer simulations of blast waves on the brain with clinical studies of veterans suffering from mild traumatic brain injuries (TBIs) to help improve helmet designs.

Paul Taylor and John Ludwigsen of Sandia’s Terminal Ballistics Technology Department and Corey Ford, a neurologist at UNM’s Health Sciences Center, are in the final year of a four-year study of mild TBI funded by the Office of Naval Research.

The team hopes to identify threshold levels of stress and energy on which better military and sports helmet designs could be based. They could be used to program sensors placed on helmets to show whether a blast is strong enough to cause TBI.

Many TBI sufferers experience no or subtle immediate symptoms that may keep them from seeking medical attention. The sensors could alert them to a potential problem.

“Our ultimate goal is to help our military and eventually our civilian population by providing guidance to helmet designers so they can do a better job of protecting against some of these events we are seeing clinically and from a physics perspective,” said Taylor, Sandia’s principal investigator on the project. “To do that we’ve got to know what are the threshold conditions that correlate with various levels of TBI.”

The study is the only TBI research that combines computer modeling and simulation of the physical effects of a blast with analyses of clinical magnetic resonance images (MRIs) of patients who suffer such injuries, Taylor said.

Immediately following blast waves, soldiers can suffer brief losses of consciousness, but more damage evolves weeks later, Ford said. The symptoms — headaches, memory loss, mood disorders, depression and cognitive problems — can prevent sufferers from working, he said.

Taylor is applying shock wave physics to understand how sensitive brain tissue is affected by waves from roadside bombs or blunt impacts within the first 5-10 milliseconds. That’s before a victim’s head moves any significant distance in response to the blast.

“This stuff is over before you have any chance to react and probably before you even knew it happened to you,” Taylor said. Humans’ fastest reaction times as teenagers are 75-100 milliseconds.

Ford says levels of energy transmitted into the brain by a blast wave “could be part of the injury mechanism associated with TBI and the mechanism by which it happens may not be mitigated by traditional methods of protecting the head with a helmet.”

At Sandia, researchers created a computer model of a man’s head and neck. The model includes the jaw — another first in TBI research — because a lot of blasts come from improvised explosive devices (IEDs) at ground level, sending waves traveling at the speed of sound through the jaw and facial structure before they reach the brain, Taylor said.

Sandia’s team used the National Library of Medicine’s Visible Human Project, which was established in 1989 to build a digital image library of volumetric data representing complete, normal adult male and female anatomy.

Using images of the male, whose age was close to that of most military personnel, Taylor, with Ford as a medical consultant, created geometric models of the seven tissue types in the human head — scalp, bone, white and gray brain matter, membranes, cerebral spinal fluid, and air spaces. Over a year, they catalogued each of the tissue types seen in about 300 “slices” of the cadaver’s head, dividing what they saw into one-millimeter cubes and assigning each a tissue type for the computer simulation.

Taylor also imported digitally processed, computed tomography (CT) scans of various helmet designs into the simulations to assess the protective merits of each against blast loading.

In a typical blast simulation, 96 processors on Sandia’s Red Sky supercomputer take about a day to process a millisecond of simulated time and at least 5 milliseconds are required to capture a single blast event, Taylor said.

The 3-D simulations are visualized using two-dimensional multi-colored images of a man’s head that record an enormous amount of data. Taylor and Ford have focused on three types of energy entering the brain that may cause TBI: compressive isotropic energy associated with crushing; tensile isotropic energy that tends to expand parts of the brain and could lead to cavitation; and shear energy that causes distortion and tearing of soft tissue. The pressure and stress within the brain show up as colors moving in slow motion through and around the brain cavity on videos created from the simulations.

On the clinical side, Ford studied 13 subjects who suffered mild TBI after IEDs exploded near them. Some were stunned, most lost consciousness at least briefly, and most cannot hold a job, he said.

The research partners hope to recruit more patients, especially military veterans, who were exposed to blasts that did not penetrate the skin and who suffered a loss of consciousness, Ford says. Candidates must have no other history of significant blunt traumas.

A battery of tests measured the subjects’ memory, language and intelligence. These results were correlated with changes in functional magnetic resonance imaging (fMRI) from the patients. The 3-D fMRI studies can detect and map networks in the brain used for processes like movement, vision and attention. By comparing this data with those of a control group, Ford identified a subgroup of networks displaying abnormal brain activity in the patients. These results were then compared with energy deposition maps predicted by the computer simulations.

The research showed that certain regions of patients’ brains are hyperactive, perhaps because they are compensating for adjacent, damaged areas of the brain that were hit with high energy from the blasts. The hyperactive regions are those that experienced the least shear and tensile energies, according to the computer simulations, which can be used to predict where the hyperactivity will likely occur, they say.

The studies also showed problems with how the patients used visual information, which corresponded to their complaints about having difficulty with attention spans, Ford said.

“This is our way to validate what the simulation shows with the clinical reality,” he said.

Once Taylor and Ford determine exactly how and where the wave energy deposited in the brain gives rise to injuries, they can provide thresholds of stress and energy levels that cause TBI for consideration by helmet designers, Taylor said.

“I want us to be able to understand the physical mechanisms that lead to TBI. It would also be useful if we could make the connection between blast loading and blunt impact trauma,” Taylor said. “Once we understand that we can be more comprehensive in how we protect both our warfighters and athletes against these sorts of injuries.”

For more information about Sandia’s Defense Systems & Assessments work, click here:

http://www.sandia.gov/missions/defense_systems/index.html

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Heather Clark, hclark@sandia.gov, (505) 844-3511

Heather Clark | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie