Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017

Wissenschaftler unter Federführung der Universität Bonn nutzen Tollwutviren für ein neuartiges Testsystem: Gekoppelt an ein grün fluoreszierendes Protein zeigen die Viren, wo sich in Mäusegehirne implantierte Ersatzzellen mit dem Nervennetzwerk verschaltet haben. Kombiniert mit einer ‚Vergläserung’ des Gehirns und der so genannten Lichtscheibenmikroskopie lässt sich so erstmals der Transplantationserfolg im gesamten Gehirn visualisieren. Die Forscher sehen in dieser Methode ein großes Potenzial für die Entwicklung von neuronalen Zellersatzverfahren. Die Ergebnisse sind nun im Fachjournal „Nature Communications” erschienen.

Bei zahlreichen Erkrankungen oder Verletzungen gehen Nervenzellen im Gehirn verloren. Wissenschaftler arbeiten daran, diesen Verlust durch die Transplantation von Ersatzzellen zu kompensieren. Bei der Parkinson-Erkrankung wird dies zum Beispiel mit eingepflanzten dopaminproduzierenden Nervenzellen versucht.


Transplantat menschlicher Nervenzellen im Hippocampus einer Maus: Umgebende Neurone im Mausgehirn haben mit den transplantierten Zellen funktionelle Verbindungen geknüpft.

© Foto: Dr. Jonas Doerr

Die zentrale Frage bei solchen Verfahren ist, ob sich die implantierten Zellen tatsächlich mit dem bestehenden Nervennetzwerk verschalten und dadurch den Funktionsverlust ausgleichen. „Bisherige Methoden gaben nur einen unvollständigen oder sehr kleinräumigen Einblick zur funktionellen Integration implantierter Zellen im Gehirn“, sagt Prof. Dr. Oliver Brüstle vom Institut für Rekonstruktive Neurobiologie der Universität Bonn und der LIFE & BRAIN GmbH.

Viren breiten sich auch rückschreitend in den Nervenzellen aus

Zusammen mit Wissenschaftlern unterschiedlicher Disziplinen der Universität Bonn und Kooperationspartnern aus Köln und Chicago (USA) hat das Team um Prof. Brüstle ein neuartiges Verfahren entwickelt: „Damit lässt sich die Verschaltung implantierter Zellen im kompletten Gehirn hoch aufgelöst visualisieren.“

Grundlage dieser Technologie sind genetisch veränderte Tollwutviren. Dabei machen sich die Forscher zunutze, dass sich diese Viren über Nervenzellkontakte – so genannte Synapsen – rückschreitend im Nervensystem ausbreiten. Die genetisch veränderten und damit für den Menschen nicht mehr gefährlichen Tollwutviren tragen ein fluoreszierendes Protein, das die transplantierten Zellen und mit ihnen verbundene Nervenzellen des Transplantatempfängers unter dem Mikroskop grün leuchten lässt.

Dreidimensionaler Nervenschaltplan im „gläsernen“ Gehirn

Das Forscherteam transplantierte humane neurale Stammzellen in zwei verschiedene Gehirnregionen von Mäusen. Nach der Ausreifung der Stammzellen in Neurone infizierten die Wissenschaftler die Transplantate mit dem veränderten Tollwutvirus-Fluoreszenz-Komplex. Zu einem späteren Zeitpunkt wurden die transplantierten Gehirne einem speziellen Klärungsverfahren unterzogen.

„Dieses Verfahren erlaubt es, die Gehirne völlig transparent – man kann sagen »gläsern« – werden zu lassen“, sagt Dr. Martin Schwarz von der Bonner Epileptologie, der diese Methode perfektioniert hat. Anschließend wird das „gläserne“ Gehirn ähnlich wie bei einer Computertomographie Schicht für Schicht mit einem so genannten Lichtscheibenmikroskop untersucht, das Prof. Dr. Ulrich Kubitscheck und sein Team vom Institut für Physikalische und Theoretische Chemie der Universität Bonn eigens für diese Anwendung entwickelt haben.

„Mit diesem Verfahren wird das Gehirn in über 1.000 virtuellen optischen Schnitten hochauflösend abgetastet; anschließend werden die Daten wieder dreidimensional rekonstruiert“, erklärt Prof. Kubitscheck. „Da die implantierten Neurone und mit ihnen verbundene Nervenzellen des Empfängers grün leuchten, lässt sich so eine dreidimensionale Gehirnkarte der mit dem Transplantat verbundenen Empfängerzellen, ein so genanntes Connectom erstellen“, sagt Dr. Jonas Doerr, der zusammen mit Martin Schwarz als Erstautor der Studie zeichnet.

Da in dem gläsern gemachten Gehirn das Gewebe nicht mehr sichtbar ist, haben die Forscher in einem letzten Schritt die Gehirnkarten digital mit Kernspindaten von Mausgehirnen unterlegt. „Ähnlich einem Globus kann so jede grün markierte Zelle einem bestimmten anatomischen Territorium zugeordnet werden“, so Prof. Dr. Mathias Hoehn vom Max-Planck-Institut für Stoffwechselforschung in Köln, dessen Gruppe diese Berechnungen durchgeführt hat.

Großes Potenzial für die Entwicklung von Nervenzelltransplantaten

„Unsere Befunde zeigen, dass die transplantierten Neurone sehr spezifisch in die Schaltkreise der jeweiligen Zielregion eingebaut werden“, berichtet Prof. Brüstle. Die neuartige Technologie birgt nach Überzeugung der Forscher ein großes Potenzial. Modellhaft ließen sich damit die Verschaltungsfähigkeit von Nervenzelltransplantaten vor einer klinischen Anwendung genau bestimmen und optimieren. In einem nächsten Schritt wollen die Wissenschaftler mit dem Tollwutvirus-System untersuchen, wie sich humane dopaminproduzierende Zellen am besten im Gehirn von Parkinson-Mäusen verschalten lassen.

Publikation: Whole-brain 3D mapping of human neural transplant innervation, Nature Communications, DOI: 10.1038/ncomms14162

Kontakt für die Medien:

Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologe
Universität Bonn
LIFE & BRAIN GmbH
Tel. 0228/6885500
E-Mail: brustle@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Wachablösung im Immunsystem: wie Dendritische Zellen ihre Bewaffnung an Mastzellen übergeben
16.11.2017 | Universitätsklinikum Magdeburg

nachricht Wie Lungenkrebs zur Entstehung von Lungenhochdruck führt
16.11.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte