Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017

Wissenschaftler unter Federführung der Universität Bonn nutzen Tollwutviren für ein neuartiges Testsystem: Gekoppelt an ein grün fluoreszierendes Protein zeigen die Viren, wo sich in Mäusegehirne implantierte Ersatzzellen mit dem Nervennetzwerk verschaltet haben. Kombiniert mit einer ‚Vergläserung’ des Gehirns und der so genannten Lichtscheibenmikroskopie lässt sich so erstmals der Transplantationserfolg im gesamten Gehirn visualisieren. Die Forscher sehen in dieser Methode ein großes Potenzial für die Entwicklung von neuronalen Zellersatzverfahren. Die Ergebnisse sind nun im Fachjournal „Nature Communications” erschienen.

Bei zahlreichen Erkrankungen oder Verletzungen gehen Nervenzellen im Gehirn verloren. Wissenschaftler arbeiten daran, diesen Verlust durch die Transplantation von Ersatzzellen zu kompensieren. Bei der Parkinson-Erkrankung wird dies zum Beispiel mit eingepflanzten dopaminproduzierenden Nervenzellen versucht.


Transplantat menschlicher Nervenzellen im Hippocampus einer Maus: Umgebende Neurone im Mausgehirn haben mit den transplantierten Zellen funktionelle Verbindungen geknüpft.

© Foto: Dr. Jonas Doerr

Die zentrale Frage bei solchen Verfahren ist, ob sich die implantierten Zellen tatsächlich mit dem bestehenden Nervennetzwerk verschalten und dadurch den Funktionsverlust ausgleichen. „Bisherige Methoden gaben nur einen unvollständigen oder sehr kleinräumigen Einblick zur funktionellen Integration implantierter Zellen im Gehirn“, sagt Prof. Dr. Oliver Brüstle vom Institut für Rekonstruktive Neurobiologie der Universität Bonn und der LIFE & BRAIN GmbH.

Viren breiten sich auch rückschreitend in den Nervenzellen aus

Zusammen mit Wissenschaftlern unterschiedlicher Disziplinen der Universität Bonn und Kooperationspartnern aus Köln und Chicago (USA) hat das Team um Prof. Brüstle ein neuartiges Verfahren entwickelt: „Damit lässt sich die Verschaltung implantierter Zellen im kompletten Gehirn hoch aufgelöst visualisieren.“

Grundlage dieser Technologie sind genetisch veränderte Tollwutviren. Dabei machen sich die Forscher zunutze, dass sich diese Viren über Nervenzellkontakte – so genannte Synapsen – rückschreitend im Nervensystem ausbreiten. Die genetisch veränderten und damit für den Menschen nicht mehr gefährlichen Tollwutviren tragen ein fluoreszierendes Protein, das die transplantierten Zellen und mit ihnen verbundene Nervenzellen des Transplantatempfängers unter dem Mikroskop grün leuchten lässt.

Dreidimensionaler Nervenschaltplan im „gläsernen“ Gehirn

Das Forscherteam transplantierte humane neurale Stammzellen in zwei verschiedene Gehirnregionen von Mäusen. Nach der Ausreifung der Stammzellen in Neurone infizierten die Wissenschaftler die Transplantate mit dem veränderten Tollwutvirus-Fluoreszenz-Komplex. Zu einem späteren Zeitpunkt wurden die transplantierten Gehirne einem speziellen Klärungsverfahren unterzogen.

„Dieses Verfahren erlaubt es, die Gehirne völlig transparent – man kann sagen »gläsern« – werden zu lassen“, sagt Dr. Martin Schwarz von der Bonner Epileptologie, der diese Methode perfektioniert hat. Anschließend wird das „gläserne“ Gehirn ähnlich wie bei einer Computertomographie Schicht für Schicht mit einem so genannten Lichtscheibenmikroskop untersucht, das Prof. Dr. Ulrich Kubitscheck und sein Team vom Institut für Physikalische und Theoretische Chemie der Universität Bonn eigens für diese Anwendung entwickelt haben.

„Mit diesem Verfahren wird das Gehirn in über 1.000 virtuellen optischen Schnitten hochauflösend abgetastet; anschließend werden die Daten wieder dreidimensional rekonstruiert“, erklärt Prof. Kubitscheck. „Da die implantierten Neurone und mit ihnen verbundene Nervenzellen des Empfängers grün leuchten, lässt sich so eine dreidimensionale Gehirnkarte der mit dem Transplantat verbundenen Empfängerzellen, ein so genanntes Connectom erstellen“, sagt Dr. Jonas Doerr, der zusammen mit Martin Schwarz als Erstautor der Studie zeichnet.

Da in dem gläsern gemachten Gehirn das Gewebe nicht mehr sichtbar ist, haben die Forscher in einem letzten Schritt die Gehirnkarten digital mit Kernspindaten von Mausgehirnen unterlegt. „Ähnlich einem Globus kann so jede grün markierte Zelle einem bestimmten anatomischen Territorium zugeordnet werden“, so Prof. Dr. Mathias Hoehn vom Max-Planck-Institut für Stoffwechselforschung in Köln, dessen Gruppe diese Berechnungen durchgeführt hat.

Großes Potenzial für die Entwicklung von Nervenzelltransplantaten

„Unsere Befunde zeigen, dass die transplantierten Neurone sehr spezifisch in die Schaltkreise der jeweiligen Zielregion eingebaut werden“, berichtet Prof. Brüstle. Die neuartige Technologie birgt nach Überzeugung der Forscher ein großes Potenzial. Modellhaft ließen sich damit die Verschaltungsfähigkeit von Nervenzelltransplantaten vor einer klinischen Anwendung genau bestimmen und optimieren. In einem nächsten Schritt wollen die Wissenschaftler mit dem Tollwutvirus-System untersuchen, wie sich humane dopaminproduzierende Zellen am besten im Gehirn von Parkinson-Mäusen verschalten lassen.

Publikation: Whole-brain 3D mapping of human neural transplant innervation, Nature Communications, DOI: 10.1038/ncomms14162

Kontakt für die Medien:

Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologe
Universität Bonn
LIFE & BRAIN GmbH
Tel. 0228/6885500
E-Mail: brustle@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik