Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TIF2 - ein neues potenzielles Ziel für die Behandlung von Fettleibigkeit

02.12.2010
Dem Forscherteam um Daniel Metzger und Pierre Chambon vom Institut für Genetik, Molekular- und Zellbiologie (IGBMC) in Illkirch (Elsass) ist es gelungen, die Funktion eines Muskelproteins (TIF2) zu entschlüsseln.

Die Ergebnisse bieten neue Perspektiven für die Behandlung von Fettleibigkeit und Diabetes und wurden am 3. November 2010 in der renommierten Fachzeitschrift Cell metabolism veröffentlicht [1].

TIF2 ist verantwortlich für die "optimale" Energieproduktion in den Muskeln. Diese Optimierung geht auf eine genetische Selektion in der Wildnis zurück, bei der die Säugetiere gezwungen waren, angesichts der spärlichen Nahrung ihre Energieproduktion zu maximieren. Unsere bewegungsarme Lebensweise und der Überschuss an Nahrungsmitteln haben dieses Gleichgewicht stark durcheinandergebracht, wodurch das TIF2-Protein heute negative Auswirkungen auf unsere Gesundheit hat: Es begünstigt Fettleibigkeit und Diabetes.

Würde man das Protein gezielt beeinflussen, könnte die Wirkung des TIF2 angepasst werden. Die Energieeffizienz könnte reduziert werden, indem in den Muskeln beispielsweise ein Energiefluss in Form von Wärme erzeugt werden würde. Eine kontrollierte Umwandlung der Muskelfasern [2] wäre ebenfalls denkbar. Diese ist eine Folge der Bewegungsarmut und auch Ursache für Diabetes und Fettleibigkeit.

Die Ergebnisse dieser Studie sind sehr vielversprechend und eröffnen nicht nur neue therapeutische Möglichkeiten zur Behandlung der Diabetes oder der Fettleibigkeit, sondern auch zur Behandlung anderer Krankheiten, wie z.B. Muskelerkrankungen.

[1] "The Transcriptional Coregulators TIF2 and SRC-1 Regulate Energy Homeostasis by Modulating Mitochondrial Respiration in Skeletal Muscles", Cell metabolism - 03.11.2010 - http://www.ncbi.nlm.nih.gov/pubmed/21035760

[2] Man unterscheidet zwei Hauptarten von Muskelfasern:

- Die Slow-Twitch-Fasern (ST- oder Typ-1-Fasern) sind langsam kontrahierende Muskelfasern. Sie sind auf Dauerleistung und langsame Bewegungen ausgelegt und ermüden nur sehr langsam. Die ST-Faser gewinnt ihre Energie aerob, wobei der dazu benötigte Sauerstoff dem Blut entnommen wird. Sie reagieren sensibel auf Insulin.

- Die Fast-Twitch-Fasern (FT- oder Typ-2-Fasern) sind schnell kontrahierende Muskelfasern. Sie verbrauchen mehr Energie und ermüden schneller. Sie sind insulinresistent. Diese Insulinresistenz verursacht einen geringeren Glukosebedarf der Muskeln, eine Erhöhung der Glukoseproduktion in der Leber und schließlich Diabetes. Die Bewegungsarmut erfordert eine Erhöhung der Anzahl an FT-Fasern im Vergleich zu den ST-Fasern.

Kontakte:

- Daniel Metzger, IGBMC - Tel: +33 3 88 65 34 63 - Daniel.Metzger@igbmc.fr

- Pierre Chambon, IGBMC - Tel: +33 3 88 65 32 13 - Pierre.Chambon@igbmc.fr

Quellen:

- "TIF2, une nouvelle cible potentielle pour le traitement de l'obésité", Pressemitteilung des IGBMC - 11.2010 http://www-igbmc.u-strasbg.fr/Publications/Presse/Metzger_nov2010.pdf

- "Physiopathologie du diabète de type 2", CHU Pitié-Salpêtrière http://www.chups.jussieu.fr/polys/diabeto/POLY.Chp.3.html

Redakteurin: Claire Cécillon, claire.cecillon@diplomatie.gouv.fr

| Wissenschaft-Frankreich

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Proteomik hilft den Einfluss genetischer Variationen zu verstehen
27.03.2017 | Technische Universität München

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie