Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tempo-Daten für das „Navi“ im Kopf

06.12.2016

Um uns gezielt durch den Raum zu lenken, benötigt das Gehirn ein „Gefühl“ für das Tempo unserer eigenen Fortbewegung. Doch wie gelangen solche Reize überhaupt ins Gehirn? Forscher des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) haben nun bei Mäusen einen Signalweg identifiziert, der Geschwindigkeitsinformationen direkt in die Navigationszentrale des Gehirns einspeist. Wissenschaftler um Stefan Remy berichten darüber im Fachjournal „Nature Neuroscience“. Beim Menschen gibt es ähnliche Nervenleitungen. Durch Alzheimer werden sie erwiesenermaßen beschädigt – eine mögliche Ursache dafür, dass bei dieser Demenzform häufig Orientierungsstörungen auftreten.

Für die aktuelle Studie stimulierten die Forscher gezielt bestimmte Areale in den Gehirnen von Mäusen und registrierten die daraus folgende Hirnaktivität. „Bei vorherigen Untersuchungen hatten wir im Medialen Septum bestimmte Zellen gefunden, die umso schneller feuern, je schneller sich die Maus bewegt. Man könnte sie als ‚Tachometerzellen‘ beschreiben. Ihren Input erhalten sie möglicherweise von tiefer gelegenen Hirnarealen, die den Bewegungsantrieb steuern“, erläutert Professor Remy.


Bonner DZNE-Forscher haben einen neuronalen Signalweg identifiziert, über den Geschwindigkeitsinformationen in die Navigationszentrale des Gehirns gelangen. Bild: DZNE/Daniel Justus; OpenStreetMap

Neuronaler Datenbus

Diese Nervenzellen sind über lange Fortsätze mit anderen Hirnbereichen verbunden. Darunter ist ein Areal das „Entorhinaler Cortex“ genannt wird und als Navigationszentrale des Gehirns gilt. „In dieser Hirnregion werden letztlich die Berechnungen gemacht, die für das Navigieren im Raum erforderlich sind“, sagt Remy.

„Jetzt konnten wir zeigen, dass die Feuerrate der Tachometerzellen die neuronale Aktivität im Entorhinalen Cortex beeinflusst. Steigt die Feuerrate nimmt auch die Aktivität im Entorhinalen Cortex zu. Die Tachometerzellen wirken wie ein Datenbus, eine Schnittstelle, die Geschwindigkeitsinformationen direkt in die Navigationszentrale des Gehirns einspeist.“

Ursache für Orientierungsstörungen?

Beim Menschen gibt es vergleichbare Nervenbahnen, die ebenfalls Mediales Septum und Entorhinalen Cortex miteinander vernetzen. Deren Funktion wurde zwar noch nicht im Detail erforscht. Von Untersuchungen an Alzheimer-Patienten ist jedoch bekannt, dass diese Verbindungen infolge der Erkrankung verkümmern.

„Zu den Symptomen einer Alzheimer-Erkrankung gehören Störungen des Ortsgedächtnisses. Dann kann es vorkommen, dass die Betroffenen nicht mehr den Weg nach Hause finden“, sagt Remy. „Unsere Ergebnisse bieten nun eine mögliche Erklärung für solche Symptome. Nämlich, dass der Navigationszentrale des Gehirns die Information über die Bewegungsgeschwindigkeit abhandenkommt.“

Originalveröffentlichung
„Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections“, Daniel Justus, Dennis Dalügge, Stefanie Bothe, Falko Fuhrmann, Christian Hannes, Hiroshi Kaneko, Detlef Friedrichs, Liudmila Sosulina, Inna Schwarz, David Anthony Elliott, Susanne Schoch, Frank Bradke, Martin Karl Schwarz, Stefan Remy, Nature Neuroscience, DOI: http://dx.doi.org/10.1038/nn.4447

Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2016/pressemitteilung-nr-21.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Starkes Übergewicht: Magenbypass und Schlauchmagen vergleichbar
17.01.2018 | Universität Basel

nachricht Therapieansatz: Kombination von Neuroroboter und Hirnstimulation aktiviert ungenutzte Nervenbahnen
16.01.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie