Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strahlentherapie: Auf dem Weg zu einer individuell abgestimmten Dosis in der Krebsbehandlung

24.09.2008
Ein Forscher des Universitätsspitals Lausanne untersucht die Wirkungen einer 2004 in der Schweiz eingeführten neuen Strahlentherapie auf den Organismus.

Diese Radioimmuntherapie, die sich gegen bestimmte Arten von Lymphomen (Krebserkrankungen des Lymphsystems) richtet, beruht auf der Injektion von Antikörpern, an die ein radioaktives Atom gekoppelt ist, in die Blutbahn. Ziel des vom Schweizerischen Nationalfonds unterstützten Projekts ist die Optimierung der Behandlung durch eine individuell auf den einzelnen Patienten abgestimmte Dosis.

Die auf den einzelnen Krebspatienten zugeschnittene Behandlung ist eine Verheissung der Medizin der Zukunft. Und gleichzeitig das Ziel des Projekts von Sébastien Baechler, Forschungsleiter am Institut für angewandte Strahlenphysik des Universitätsspitals Lausanne. Er befasst sich mit einer neuen Strahlentherapie gegen bestimmte Krebsarten, die zur Gruppe der Non-Hodgkin-Lymphome gehören. Bei dieser 2004 in der Schweiz eingeführten Radioimmuntherapie mit 90Y-Zevalin® wird das radioaktive Element Yttrium-90 (90Y) in den Blutkreislauf gebracht. Die Arbeiten des Lausanner Forschers konzentrieren sich unter anderem auf die Messung der Strahlenbelastung der Niere und das Abfallen der Konzentration an Blutplättchen im Blut.

Strahlenquelle in unmittelbarer Nähe des Tumors

Der innovative Ansatz der Strahlentherapie besteht darin, dass die Strahlenquelle zielgerichtet in den Tumor geleitet wird. Konkret werden Antikörper, an die Yttrium-Atome gekoppelt sind, in den Blutkreislauf injiziert. Die Antikörper werden so gewählt, dass sie bestimmte Lymphome erkennen und sich an ihre Oberfläche heften. Nach dieser Verankerung beginnen die Yttrium-Atome durch die von ihnen ausgesendete Strahlung mit der Zerstörung des Tumors. Später übernimmt das Immunsystem die vollständige Beseitigung des Krebsgewebes. Diese Behandlung ist so wirksam, weil die Lymphome sehr empfindlich auf ionisierende Strahlung reagieren.

Doch die Behandlung verschont das Knochenmark nicht ganz, wo sich die Stammzellen des Bluts befinden, aus denen sowohl die roten und weissen Blutkörperchen als auch die Blutplättchen hervorgehen. Die Strahlung stört diese Produktion, verursacht starke Müdigkeit und erhöht das Risiko für Infektionskrankheiten und Blutungen.

Im Rahmen der ersten Studie führteSébastien Baechler Messungen zur Strahlenbelastung der Niere bei 17 Patientinnen und Patienten durch. Da das Yttrium an einen Antikörper gekoppelt ist, der zum Immunsystem gehört, wäre eigentlich nicht zu erwarten, dass in diesem Organ eine hohe Radioaktivität gemessen werden kann. Der Forscher stellte jedoch überraschenderweise fast zehn Mal höhere Werte fest, als im Gesuch für die Marktzulassung von 90Y-Zevalin® in den USA angegeben worden waren. "Wir können uns diesen Unterschied nicht erklären", sagt Sébastien Baechler. Trotzdem stellt dies die Behandlung nicht in Frage, da die Dosen gering und Beeinträchtigungen der Nieren wenig wahrscheinlich sind. Bei einer intensiven Radioimmuntherapie mit anschliessender Autotransplantation von Knochenmark muss dieses Risiko allerdings beachtet werden.

Blutplättchen: Vorläuferzellen nach Chemotherapie empfindlicher

Ein weiteres wichtiges Ergebnis betrifft das Abfallen der Blutplättchenkonzentration im Blut. Noch ist die Radioimmuntherapie in der Onkologie keine gängige Methode und wird nur in zweiter Linie nach der traditionellen Chemotherapie eingesetzt. Problematisch ist dabei, dass die Zahl der Blutplättchen im Blut durch die beiden Behandlungen mehr oder weniger stark abfällt. Deshalb warten die behandelnden Ärzte im Allgemeinen, bis sich die Blutplättchenkonzentration wieder normalisiert hat, bevor sie mit der Radioimmuntherapie beginnen.

Trotz dieser Vorsichtsmassnahme beobachtete Sébastien Baechler im Rahmen der zweiten Studie mit 32 Patientinnen und Patienten, die er in Zusammenarbeit mit dem Johns Hopkins Hospital in Baltimore durchführte, dass die Blutplättchenzahl das zweite Mal umso markanter fällt, je kürzer der Zeitraum zwischen den beiden Behandlungen ist. Das bedeutet, dass die Vorläuferzellen der Blutplättchen in der Erholungsphase nach der Chemotherapie gegenüber Strahlungen empfindlicher sind. "Wir haben ein mathematisches Modell für dieses Phänomen entwickelt, mit dem sich Simulationen durchführen lassen, die sich gut mit unseren Beobachtungen decken", erklärt Baechler.

Individuell abgestimmte Dosen

"Das Ziel unserer Forschung ist es, eine Methode zur Festlegung der Strahlendosis zu entwickeln, mit der eines Tages für jeden Patienten die ideale Dosis gefunden werden kann, die für die Zerstörung des Tumors ausreichend ist und gleichzeitig das gesunde Gewebe verschont", sagt der Medizinphysiker. "Die Messung der Strahlendosis, die auf das Knochenmark wirkt, wird im Hinblick auf den unvorhersehbaren Zusammenhang mit den beobachteten klinischen Wirkungen weiter diskutiert. Dieser Zusammenhang beruht im Übrigen auf einer Vielzahl von Faktoren, die sich von Patient zu Patient stark unterscheiden können."

In der Schweiz erkranken jährlich 1300 Personen an einem Non-Hodgkin-Lymphom. Dabei handelt es sich um eine Gruppe von Krebstumoren des lymphatischen Systems, zu dem das Knochenmark, die Milz, der Thymus und die Lymphknoten gehören.

Kontakt:
Dr. Sébastien Baechler
Institut für angewandte Radiophysik der Universität Lausanne
Grand-Pré 1
CH - 1007 Lausanne
Tel.: + 41 21 623 34 60
Fax: + 41 21 623 34 35
E-Mail: sebastien.baechler@chuv.ch

| idw
Weitere Informationen:
http://www.snf.ch

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics