Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum sprechen Hirntumore nicht auf Medikamente an?

31.08.2009
Neuer Tumormarker kennzeichnet Resistenz und bietet Ansatzpunkt für Therapie / Heidelberger Neuropathologen veröffentlichen in "Clinical Cancer Research"

Bösartige Hirntumore sprechen häufig nicht auf vielversprechende, neue Medikamente an. Heidelberger Wissenschaftler haben einen Mechanismus und einen Tumormarker für die Entwicklung dieser Resistenz gefunden. Ein "Todesrezeptor" kann möglicherweise Hinweise darauf geben, wie groß die Erfolgschancen einer Chemotherapie sind. Gleichzeitig bietet er einen neuen Ansatz für eine erfolgversprechende Therapie von Hirntumoren.

Dr. Wolf Müller, Leitender Oberarzt in der Abteilung Neuropathologie am Institut für Pathologie des Universitätsklinikums Heidelberg, und sein Team konnten zeigen, dass bestimmte Hirntumore (Astrozytome) ein entscheidendes Protein auf ihrer Zelloberfläche, den sogenannten Todesrezeptor, stilllegen können.

An diesen Rezeptor docken die Medikamente an und bringen dadurch die Zellen zum Absterben. Ein intakter "Todesrezeptor" kann deshalb als Tumormarker dafür dienen, ob eine Therapie Erfolgschancen hat. Die Studie wurde mit Fördermitteln des Tumorzentrums Heidelberg/Mannheim erstellt und in der Zeitschrift "Clinical Cancer Research" veröffentlicht.

Primäre Hirntumore, die sich aus Gehirnzellen entwickeln, insbesondere das bösartige Glioblastom, haben häufig eine schlechte Prognose. Obwohl die verschiedenen Therapiemöglichkeiten ausgeschöpft werden, sterben die Patienten mit einem Glioblastom in der Regel innerhalb von zwei Jahren nach ihrer Diagnose. Deshalb arbeiten die Forscher mit Hochdruck daran, die Biologie dieser Tumoren besser kennen zu lernen, um effizientere Therapien zu entwickeln.

"Todesrezeptor" kann an- und abgeschaltet werden

Die Heidelberger Wissenschaftler untersuchten verschiedene primäre Hirntumore (Astrozytome, zu denen auch das Glioblastom gehört) und stellten fest, dass das Gen für den Todesrezeptor DR4 in bis zu 75 Prozent der Fälle durch eine so genannte "Promoter-Methylierung" abgeschaltet war. Dies bedeutet, dass sich Methylgruppen an den Abschnitt des Gens anlagern, der für seine Aktivität (Expression) ausschlaggebend ist. Damit kann die Information des Gens nicht mehr abgelesen werden; das Gen ist stillgelegt.

Der Todesrezeptor DR4 ist ein attraktives Ziel für eine gezielte Rezeptor-spezifische Therapie. Glücklicherweise existiert bereits ein Medikament, Mapatumumab, ein Antikörper-Protein, das direkt an den Rezeptor bindet und den Zelltod auslösen kann. Dieses Medikament wird zurzeit in einer Reihe von klinischen Studien (Phase II) bei anderen soliden Tumoren, z.B. Lungenkrebs, getestet.

Neuer Ansatz für spezifische Therapie von Hirntumorzellen

Bei Gliomen erscheint die Behandlung mit Mapatumumab besonders interessant, da der Todesrezeptor in der Regel nur auf Tumorzellen, jedoch nicht auf anderen Gehirnzellen zu finden ist. Da Gliome besonders invasiv in das Gehirngewebe einwachsen, ist ihre chirurgische Entfernung unmöglich und eine Chemotherapie besonders schwierig. Mit Mapatumumab könnten chemotherapeutisch alle Tumorzellen erreicht und in den Zelltod getrieben werden, während gesunde Hirnzellen ohne Rezeptor geschont würden.

In Zellkulturversuchen konnten die Forscher die Methylierung bereits rückgängig und den "Todesrezeptors" wieder funktionstüchtig machen: Die Tumorzellen reagierten auf die Medikamente und starben ab. Wurde das Ablesen wieder unterdrückt, waren die Zellen erneut resistent.

"Bisher ist es noch nicht möglich, therapeutisch ausschließlich einzelne Gene gezielt durch diese Manipulationen anzuschalten. Die Kenntnis der Tumormarker kann jedoch richtungweisend für die Entwicklung neuer Therapien sein, die diese Genmanipulation zum Ziel hat", erklärt Dr. Wolf Müller. Durch gezielte Untersuchungen am Tumorgewebe vor einer solchen Therapie könnten nun die Patienten mit einem intakten Todesrezeptor identifiziert werden. Diese hätten dann gute Voraussetzungen, um von der erfolgversprechenden Therapie zu profitieren, während anderen Patienten zumindest die Nebenwirkungen einer aussichtslosen Therapie erspart blieben.

Literatur:
Epigenetic Silencing of Death Receptor 4 Mediates Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Gliomas. Agnes Elias, Markus D Siegelin, Albert Steinmüller, Andreas von Deimling, Ulrike Lass, Bernhard Korn, Wolf Mueller, Clinical Cancer Research, 2009, Epub ahead of print.
Weitere Informationen über die Neuropathologie im Internet:
www.klinikum.uni-heidelberg.de/Neuropathologie.370.0.html?&L=de
Ansprechpartner:
Dr. med. Wolf C. Müller
- Leitender Oberarzt -
Abteilung für Neuropathologie am Institut für Pathologie
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 220
69120 Heidelberg
Tel.: 06221 / 56 39 912
Fax: 06221 / 56 45 66
E-Mail: Wolf.Mueller(at)med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit 1.600 Betten werden jährlich rund 500.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.100 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. (Stand 12/2008)
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/presse
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue statistische Verfahren zur Überprüfung von Arzneimittel-Generika
25.07.2017 | Ruhr-Universität Bochum

nachricht Chancen für die Behandlung von Kinderdemenz
24.07.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie