Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller lernen durch magnetische Hirnstimulation

26.01.2011
Bochumer Forscher untersuchen die Wirkung von TMS
Reizmuster verändern gezielt die Aktivität bestimmter Nervenzellen

Was klingt wie Science Fiction ist tatsächlich möglich: Durch die magnetische Stimulation von außen lässt sich die Aktivität bestimmter Hirnnervenzellen gezielt beeinflussen. Was dabei im Gehirn genau passiert, war bisher ungeklärt.

Bochumer Mediziner unter Leitung von Prof. Dr. Klaus Funke (Abteilung Neurophysiologie) konnten nun zeigen, dass verschiedene Reizmuster auf unterschiedliche Zellen wirken und ihre Aktivität hemmen oder steigern. Bestimmte Reizmuster führten so dazu, dass Ratten leichter lernen.

Die Erkenntnisse könnten dazu beitragen, dass die Hirnstimulation künftig gezielter gegen Funktionsstörungen des Gehirns eingesetzt werden kann. Die Forscher haben ihre Studien im Journal of Neuroscience und im European Journal of Neuroscience veröffentlicht.

Magnetische Pulse stimulieren das Gehirn

Die transkranielle Magnetstimulation, kurz TMS, ist eine relativ neue Methode zur schmerzfreien Erregung von Gehirn-Nervenzellen. Die erstmals 1985 von Anthony Barker vorgestellte Methode beruht darauf, dass man mittels eines Magnetfeldes die direkt unter dem Schädelknochen liegende Hirnrinde, den Kortex, stimulieren kann. Anwendung findet die TMS in der Diagnostik, in der Grundlagenforschung und als potenzielles therapeutisches Instrument.

Diagnostisch eingesetzt dient ein einzelner Magnetpuls dazu, die Aktivierbarkeit von Nervenzellen in einem Kortexareal zu testen, um so Veränderungen bei Erkrankungen oder nach Medikament-Einnahme oder auch nach einer vorangegangenen künstlichen Stimulation des Gehirns zu beurteilen. Ein einzelner Magnetpuls kann auch dazu dienen, die Beteiligung eines bestimmten Kortexareals an einer sensorischen, motorischen oder kognitiven Aufgabe zu testen, da er kurzfristig dessen natürliche Aktivität stört, den Bereich also vorübergehend „abschaltet“.

Wiederholte Reize verändern die Gehirn-Aktivität

Seit Mitte der 1990er-Jahre wird die repetitive TMS genutzt, um die Aktivierbarkeit von Nervenzellen im Kortex des Menschen gezielt zu verändern: „Im Allgemeinen verringert sich die Aktivität der Zellen durch eine niederfrequente Stimulation um ein Hz, d.h. durch je einen Magnetpuls pro Sekunde. Bei höheren Frequenzen von fünf bis 50 Pulsen pro Sekunde steigt die Aktivität der Zellen“, erklärt Prof. Funke. Die Forscher beschäftigen sich vor allem mit speziellen Reizmustern wie der sog. Theta-Burst Stimulation (TBS).

Dabei werden 50 Hz-Salven (Bursts) mit 5 Hz wiederholt. „Dieser Rhythmus lehnt sich an den natürlichen Theta-Rhythmus von vier bis sieben Hertz an, den man im EEG beobachten kann“, so Funke. Die Wirkung hängt vor allem davon ab, ob solche Reizmuster kontinuierlich (cTBS, abschwächende Wirkung) oder mit Unterbrechungen (intermittierend, iTBS, verstärkende Wirkung) gegeben werden.

Kontaktstellen zwischen Zellen verstärken sich oder werden geschwächt

Wie genau die Aktivität von Nervenzellen durch wiederholte Reizung verändert wird, ist weitgehend unbekannt. Man nimmt an, dass die Kontaktstellen (Synapsen) zwischen den Zellen durch die wiederholte Reizung verstärkt (synaptische Potenzierung) oder geschwächt werden (synaptische Depression), ein Vorgang, der auch beim Lernen eine wichtige Rolle spielt. So konnte vor kurzem auch gezeigt werden, dass die Wirkungen von TMS und Lernen beim Menschen interagieren.

Hemmende Kortexzellen reagieren besonders empfindlich auf die Stimulation

Die Bochumer Forscher konnten jetzt erstmals zeigen, dass eine künstliche Kortexstimulation in Abhängigkeit des verwendeten Reizprotokolls die Aktivität bestimmter hemmender Nervenzellen gezielt verändert. Das Zusammenspiel erregender und hemmender Nervenzellen ist unbedingte Voraussetzung für das gesunde Funktionieren des Gehirns. Auf Hemmung spezialisierte Nervenzellen zeigen eine weitaus größere Formenvielfalt und Aktivitätsstruktur als ihre erregenden Partner. Unter anderem produzieren sie in ihrem Zellkörper unterschiedliche Funktionsproteine. Prof. Funke konzentrierte sich in seinen Studien auf die Untersuchung der Proteine Parvalbumin (PV), Calbindin-D28k (CB) und Calretinin (CR). Sie werden von verschiedenen hemmenden Zellen aktivitätsabhängig gebildet, so dass ihre Menge Aufschluss über die Aktivität der entsprechenden Nervenzellen gibt.

Reizmuster wirken speziell auf bestimmte Zellen

Die Untersuchungen haben z.B. gezeigt, dass die aktivierend wirkende Stimulation mit Unterbrechungen (iTBS-Reizprotokoll) fast nur die PV-Bildung reduziert, während die Aktivität dämpfende kontinuierliche Stimulation (cTBS-Protokoll) oder eine ebenfalls dämpfende 1 Hz-Stimulation hauptsächlich die CB-Herstellung verringern. Die CR-Bildung veränderte sich durch keines der getesteten Reizprotokolle. Die Registrierung der elektrischen Aktivität von Nervenzellen bestätigte eine veränderte Hemmung der kortikalen Aktivität.

Schneller lernen nach Stimulation

In einer zweiten Studie, kürzlich veröffentlicht im European Journal of Neuroscience, konnte die Arbeitsgruppe von Prof. Funke zudem zeigen, dass Ratten schneller lernen, wenn sie vor jedem Training mit einem aktivierenden Reizprotokoll (iTBS) behandelt wurden, jedoch nicht, wenn das hemmende cTBS-Protokoll verwendet wurde. Es zeigte sich, dass die zunächst reduzierte Bildung des Proteins Parvalbumin (PV) durch die Lernprozedur wieder erhöht wurde, aber nur in den am Lernprozess beteiligten Hirnarealen. Bei Tieren, die nicht an der spezifischen Lernaufgabe beteiligt waren, blieb die PV-Herstellung nach der aktivierenden Stimulation reduziert. „Die iTBS-Behandlung reduziert also zunächst die Aktivität bestimmter hemmender Nervenzellen allgemein, so dass die nachfolgenden Lernaktivitäten leichter gespeichert werden können“, folgert Prof. Funke. „Dieser Vorgang wird als ‚gating‘ bezeichnet. In einem zweiten Schritt normalisiert die Lernaktivität die Hemmung und PV-Bildung wieder.“

Künftig gezielter behandeln

Die repetitive TMS wird bereits versuchsweise mit begrenztem Erfolg zur Therapie von Funktionsstörungen des Gehirns eingesetzt, vor allem bei schweren Depressionen. Außerdem konnte gezeigt werden, dass gerade Funktionsstörungen der hemmenden Nervenzellen bei neuropsychiatrischen Erkrankungen wie z.B. der Schizophrenie eine wichtige Rolle spielen. „Es ist sicher noch zu früh, aus den Ergebnissen unserer Studie neue Formen der Behandlung von Funktionsstörungen des Gehirns abzuleiten, aber die Erkenntnisse liefern einen wichtigen Beitrag für eine in Zukunft vielleicht spezifischere Anwendung der TMS“, hofft Prof. Funke.

Titelaufnahmen

Benali, A., Trippe, J., Weiler, E., Mix, A., Petrasch-Parwez, E., Girzalsky, W., Eysel, U.T., Erdmann, R. and Funke, K. (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J. Neurosci., in press.

Mix, A., Benali, A., Eysel, U.T., Funke, K. (2010) Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently. In: Eur. J. Neurosci. 32(9):1575-86. doi: 10.1111/j.1460-9568.2010.07425.x. Epub 2010 Oct 18.

Weitere Informationen

Prof. Dr. Klaus Funke, Abteilung Neurophysiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23944, E-Mail: funke@neurop.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie