Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schluss mit dem Entweder – Oder

13.01.2015

Fehlgebildete Ionenkanäle können die Ursache von Bewegungsstörungen sein. Wie es diese Kanäle schaffen, trotz ihrer Fehlfaltung der Qualitätskontrolle der Zellen zu entgehen, haben Wissenschaftler aus Würzburg und Cambridge untersucht. Sie konnten dabei ein altes Dogma widerlegen.

Gehen, Laufen, Walken, Joggen, aber auch Schlucken und Atmen ist für die meisten Menschen selbstverständlich. „Das vollzieht unser Körper ganz automatisch“, dürfte vermutlich die Mehrheit denken. Dabei gibt es eine große Zahl an Krankheiten, bei denen diese Prozesse gestört sind und nicht mehr automatisch ablaufen.

Den Ursachen einer dieser Krankheiten, der sogenannten „Startle disease“, ist die Würzburger Neurobiologin Professor Carmen Villmann auf der Spur. Jetzt wurde sie im Entstehungsprozess bestimmter Rezeptoren fündig. Der Fachzeitschrift Journal of Neuroscience ist diese Entdeckung eine Titelgeschichte wert.

„Hinter vermeintlich simplen Vorgängen wie Gehen oder Atmen verbergen sich eine Vielzahl an Signalprozessen und Regulations- und Kontrollmechanismen“, erklärt Carmen Villmann. Reize aus der Umwelt wie Berührungen oder Geräusche werden ins Rückenmark und den Hirnstamm geleitet und dort verarbeitet. Von dort aus erhalten anschließend die Muskeln Rückmeldung, mit welcher Frequenz sie sich zusammenziehen sollen, was scheinbar automatisch ablaufende Bewegungen ermöglicht und beispielsweise den Atemrhythmus kontrolliert.

Ein Gleichgewicht aus Erregung und Hemmung

„Wenn Signale vom Rückenmark zu den Muskeln weitergeleitet werden, ist ein Gleichgewicht zwischen Prozessen der Erregung und der Hemmung essentiell, um kontrollierte Bewegungen zu ermöglichen“, sagt Villmann. Übererregung oder eine fehlende Hemmung können diesen Prozess stören. Eine derartige Bewegungsstörung, die auch als Übererregbarkeitsbarkeitssyndrom bekannt ist, heißt im Fachjargon „Startle Disease“. Bei den Betroffenen funktioniert die hemmende Signalvermittlung nicht mehr fehlerfrei, in der Folge werden Muskeln übererregt und versteifen.

„Schon seit Längerem ist bekannt, dass diese Hemmung – Fachleute sprechen auch von Inhibition – im Rückenmark durch Glycinrezeptoren vermittelt wird“, erklärt die Neurobiologin. Diese Rezeptorproteine formen Poren in der Membran von Nervenzellen und lassen nur negativ geladene Chlorid-Ionen passieren. Fällt ein derartiger Rezeptor aus, ist die Balance zwischen Erregung und Inhibition zugunsten der Erregung verschoben; die Muskeln verkrampfen.

In der Zelle gibt es kein Entweder-Oder

Im Fall der „Startle Disease“ handelt es sich um eine vererbbare Erkrankung, deren Auslöser Gendefekte sind. „Bisher ging die Wissenschaft bei der Startle Disease von einer Entweder-Oder-Antwort der Zelle aus“, erklärt Villmann. Soll heißen: Dominante Mutationen in den Glycinrezeptoren, die sich fast alle in der Ionenkanalpore befinden, wurden normal transportiert, gehen aber aufgrund ihrer Dominanz mit einer gestörten Kanalleitfähigkeit einher.

Rezessive Mutationen bedingen aufgrund ihrer Lokalisation im Protein eine Fehlfaltung des entstehenden Proteins; diese werden auf ihrem Syntheseweg aussortiert. Wie die Arbeitsgruppe von Carmen Villmann jetzt zusammen mit Wissenschaftlern aus Cambridge herausfand, stimmt diese All-or-None-Annahme allerdings nicht.

Bevor die Zelle ein neues Rezeptormolekül in ihre Membran einbauen kann, muss dieses Protein auf seinem Syntheseweg mehrere Bestandteile der Zelle durchlaufen, ähnlich wie ein Produkt in einer Fabrik verschiedene Bearbeitungsschritte in verschiedenen Maschinen durchläuft. An der Proteinsynthese beteiligt sind in der Zelle beispielsweise das endoplasmatische Retikulum, das ER-Golgi intermediäre Kompartment (ERGIC) und das sekretorische System der verschiedenen Golgi Apparate. Sind Proteine aufgrund von Mutationen fehlgefaltet, sorgt das Qualitätskontrollsystem im endoplasmatischen Retikulum dafür, dass diese Proteine nicht weitergeleitet werden.

Genauer Blick in die Produktionsprozesse

Für ihre Studie untersuchten die Forscher zunächst neu-identifizierte Mutationen aus Patienten in Zellkultursystemen. „Dabei entdeckten wir, dass ein geringer Anteil der mutierten Rezeptoren durchaus bis zur Zellmembran gelangt, aber keine funktionierende Kanalpore ausbildet“, sagt Villmann. Da derartige Effekte auch durch die Überproduktion der Proteine in künstlichen Zellkultursystemen hervorgerufen werden können, untersuchten die Forscher anschließend die mutierten Kanalproteine in Systemen, die nur zu niedriger Expression des Kanalproteins führen sowie in Neuronen.

„Trotzdem konnten wir die gleichen Effekte beobachten: Subpopulationen erreichen die Zellmembran, sind aber zu wenige, um die eigentlich Funktion des Rezeptors aufrechtzuerhalten“, so Villmann. Dabei ermöglichte ein Blick in die Zellkompartimente eine genaue Verfolgung jedes mutierten Kanalproteins: Einige gelangten bis in den Golgi-Apparat und dann auch zur Zellmembran, andere erreichen nur das ERGIC-Kompartment, tauchten aber weder im Golgi-Apparat noch in der Membran auf.

Aus dieser Beobachtung zog das Wissenschaftler-Team folgende Schlussfolgerung: „Die Mutation einer einzelnen von rund 500 Aminosäuren im Rezeptor muss nicht unweigerlich zu einer massiven Fehlfaltung des Proteins führen, die eine Weiterleitung vom endoplasmatischen Retikulum blockiert“, erklärt Carmen Villmann. Dafür spreche auch die Tatsache, dass alle mutierten Rezeptoren durch Zuckermoleküle markiert wurden, was Voraussetzung für den Export aus dem endoplasmatischen Retikulum ist.

Weitere Kontrollmechanismen müssen existieren

Dennoch können nur wenige der mutierten Rezeptoren die Qualitätskontrolle der Zelle umgehen und zum eigentlichen Zielort, der Neuronenmembran, gelangen. „Es müssen also weitere Kontrollmechanismen in den Folgekompartimenten existieren“, so Villmann. Ob die Proteine zum endoplasmatischen Retikulum zurückgelangen oder direkt von Kompartimenten wie ERGIC und Golgi-Apparat der Degradation zugeführt werden, ist noch unbeantwortet. In diesen Zellmikrokosmos weiter vorzudringen, hat sich die Gruppe von Carmen Villmann als Ziel gesetzt, um die Signalwege bei dieser seltenen Erbkrankheit weiter aufzuklären.

Die Forschung wurde von der Deutschen Forschungsgemeinschaft DFG sowie dem EU-Projekt Neurocypres gefördert.

„Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia”. Natascha Schaefer, Christoph J Kluck, Kerry L Price, Heike Meiselbach, Nadine Vornberger, Stephan Schwarzinger, Stephanie Hartmann, Georg Langlhofer, Solveig Schulz, Nadja Schlegel, Knut Brockmann, Bryan Lynch, Cord-Michael Becker, Sarah CR Lummis, and Carmen Villmann, J Neurosci. 2015 Jan 7;35(1):422-37. doi: 10.1523/JNEUROSCI.1509-14.2015.

Kontakt

Prof. Dr. Carmen Villmann, Institut für Klinische Neurobiologie, T: (0931) 201-44035, villmann_c@ukw.de

Weitere Informationen:

http://www.neurobiologie.ukw.de/en/staff/prof-dr-c-villmann.html Zur Homepage von Carmen Villmann

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stammzell-Transplantation: Aktivierung von Signalwegen schützt vor gefährlicher Immunreaktion
20.04.2017 | Technische Universität München

nachricht Was Bauchspeicheldrüsenkrebs so aggressiv macht
18.04.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten