Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schluss mit dem Entweder – Oder

13.01.2015

Fehlgebildete Ionenkanäle können die Ursache von Bewegungsstörungen sein. Wie es diese Kanäle schaffen, trotz ihrer Fehlfaltung der Qualitätskontrolle der Zellen zu entgehen, haben Wissenschaftler aus Würzburg und Cambridge untersucht. Sie konnten dabei ein altes Dogma widerlegen.

Gehen, Laufen, Walken, Joggen, aber auch Schlucken und Atmen ist für die meisten Menschen selbstverständlich. „Das vollzieht unser Körper ganz automatisch“, dürfte vermutlich die Mehrheit denken. Dabei gibt es eine große Zahl an Krankheiten, bei denen diese Prozesse gestört sind und nicht mehr automatisch ablaufen.

Den Ursachen einer dieser Krankheiten, der sogenannten „Startle disease“, ist die Würzburger Neurobiologin Professor Carmen Villmann auf der Spur. Jetzt wurde sie im Entstehungsprozess bestimmter Rezeptoren fündig. Der Fachzeitschrift Journal of Neuroscience ist diese Entdeckung eine Titelgeschichte wert.

„Hinter vermeintlich simplen Vorgängen wie Gehen oder Atmen verbergen sich eine Vielzahl an Signalprozessen und Regulations- und Kontrollmechanismen“, erklärt Carmen Villmann. Reize aus der Umwelt wie Berührungen oder Geräusche werden ins Rückenmark und den Hirnstamm geleitet und dort verarbeitet. Von dort aus erhalten anschließend die Muskeln Rückmeldung, mit welcher Frequenz sie sich zusammenziehen sollen, was scheinbar automatisch ablaufende Bewegungen ermöglicht und beispielsweise den Atemrhythmus kontrolliert.

Ein Gleichgewicht aus Erregung und Hemmung

„Wenn Signale vom Rückenmark zu den Muskeln weitergeleitet werden, ist ein Gleichgewicht zwischen Prozessen der Erregung und der Hemmung essentiell, um kontrollierte Bewegungen zu ermöglichen“, sagt Villmann. Übererregung oder eine fehlende Hemmung können diesen Prozess stören. Eine derartige Bewegungsstörung, die auch als Übererregbarkeitsbarkeitssyndrom bekannt ist, heißt im Fachjargon „Startle Disease“. Bei den Betroffenen funktioniert die hemmende Signalvermittlung nicht mehr fehlerfrei, in der Folge werden Muskeln übererregt und versteifen.

„Schon seit Längerem ist bekannt, dass diese Hemmung – Fachleute sprechen auch von Inhibition – im Rückenmark durch Glycinrezeptoren vermittelt wird“, erklärt die Neurobiologin. Diese Rezeptorproteine formen Poren in der Membran von Nervenzellen und lassen nur negativ geladene Chlorid-Ionen passieren. Fällt ein derartiger Rezeptor aus, ist die Balance zwischen Erregung und Inhibition zugunsten der Erregung verschoben; die Muskeln verkrampfen.

In der Zelle gibt es kein Entweder-Oder

Im Fall der „Startle Disease“ handelt es sich um eine vererbbare Erkrankung, deren Auslöser Gendefekte sind. „Bisher ging die Wissenschaft bei der Startle Disease von einer Entweder-Oder-Antwort der Zelle aus“, erklärt Villmann. Soll heißen: Dominante Mutationen in den Glycinrezeptoren, die sich fast alle in der Ionenkanalpore befinden, wurden normal transportiert, gehen aber aufgrund ihrer Dominanz mit einer gestörten Kanalleitfähigkeit einher.

Rezessive Mutationen bedingen aufgrund ihrer Lokalisation im Protein eine Fehlfaltung des entstehenden Proteins; diese werden auf ihrem Syntheseweg aussortiert. Wie die Arbeitsgruppe von Carmen Villmann jetzt zusammen mit Wissenschaftlern aus Cambridge herausfand, stimmt diese All-or-None-Annahme allerdings nicht.

Bevor die Zelle ein neues Rezeptormolekül in ihre Membran einbauen kann, muss dieses Protein auf seinem Syntheseweg mehrere Bestandteile der Zelle durchlaufen, ähnlich wie ein Produkt in einer Fabrik verschiedene Bearbeitungsschritte in verschiedenen Maschinen durchläuft. An der Proteinsynthese beteiligt sind in der Zelle beispielsweise das endoplasmatische Retikulum, das ER-Golgi intermediäre Kompartment (ERGIC) und das sekretorische System der verschiedenen Golgi Apparate. Sind Proteine aufgrund von Mutationen fehlgefaltet, sorgt das Qualitätskontrollsystem im endoplasmatischen Retikulum dafür, dass diese Proteine nicht weitergeleitet werden.

Genauer Blick in die Produktionsprozesse

Für ihre Studie untersuchten die Forscher zunächst neu-identifizierte Mutationen aus Patienten in Zellkultursystemen. „Dabei entdeckten wir, dass ein geringer Anteil der mutierten Rezeptoren durchaus bis zur Zellmembran gelangt, aber keine funktionierende Kanalpore ausbildet“, sagt Villmann. Da derartige Effekte auch durch die Überproduktion der Proteine in künstlichen Zellkultursystemen hervorgerufen werden können, untersuchten die Forscher anschließend die mutierten Kanalproteine in Systemen, die nur zu niedriger Expression des Kanalproteins führen sowie in Neuronen.

„Trotzdem konnten wir die gleichen Effekte beobachten: Subpopulationen erreichen die Zellmembran, sind aber zu wenige, um die eigentlich Funktion des Rezeptors aufrechtzuerhalten“, so Villmann. Dabei ermöglichte ein Blick in die Zellkompartimente eine genaue Verfolgung jedes mutierten Kanalproteins: Einige gelangten bis in den Golgi-Apparat und dann auch zur Zellmembran, andere erreichen nur das ERGIC-Kompartment, tauchten aber weder im Golgi-Apparat noch in der Membran auf.

Aus dieser Beobachtung zog das Wissenschaftler-Team folgende Schlussfolgerung: „Die Mutation einer einzelnen von rund 500 Aminosäuren im Rezeptor muss nicht unweigerlich zu einer massiven Fehlfaltung des Proteins führen, die eine Weiterleitung vom endoplasmatischen Retikulum blockiert“, erklärt Carmen Villmann. Dafür spreche auch die Tatsache, dass alle mutierten Rezeptoren durch Zuckermoleküle markiert wurden, was Voraussetzung für den Export aus dem endoplasmatischen Retikulum ist.

Weitere Kontrollmechanismen müssen existieren

Dennoch können nur wenige der mutierten Rezeptoren die Qualitätskontrolle der Zelle umgehen und zum eigentlichen Zielort, der Neuronenmembran, gelangen. „Es müssen also weitere Kontrollmechanismen in den Folgekompartimenten existieren“, so Villmann. Ob die Proteine zum endoplasmatischen Retikulum zurückgelangen oder direkt von Kompartimenten wie ERGIC und Golgi-Apparat der Degradation zugeführt werden, ist noch unbeantwortet. In diesen Zellmikrokosmos weiter vorzudringen, hat sich die Gruppe von Carmen Villmann als Ziel gesetzt, um die Signalwege bei dieser seltenen Erbkrankheit weiter aufzuklären.

Die Forschung wurde von der Deutschen Forschungsgemeinschaft DFG sowie dem EU-Projekt Neurocypres gefördert.

„Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia”. Natascha Schaefer, Christoph J Kluck, Kerry L Price, Heike Meiselbach, Nadine Vornberger, Stephan Schwarzinger, Stephanie Hartmann, Georg Langlhofer, Solveig Schulz, Nadja Schlegel, Knut Brockmann, Bryan Lynch, Cord-Michael Becker, Sarah CR Lummis, and Carmen Villmann, J Neurosci. 2015 Jan 7;35(1):422-37. doi: 10.1523/JNEUROSCI.1509-14.2015.

Kontakt

Prof. Dr. Carmen Villmann, Institut für Klinische Neurobiologie, T: (0931) 201-44035, villmann_c@ukw.de

Weitere Informationen:

http://www.neurobiologie.ukw.de/en/staff/prof-dr-c-villmann.html Zur Homepage von Carmen Villmann

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise