Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schleimhäute kleben und Knochenimplantate drucken

06.10.2009
Erweitertes Biomateriallabor an der HNO-Klinik des UKJ bietet beste Forschungsmöglichkeiten

Das seit 1980 an der Klinik für Hals-, Nasen- und Ohrenheilkunde (HNO) des Jenaer Universitätsklinikums (UKJ) bestehende Biomateriallabor wurde im Juli 2009 vergrößert. In dem Labor arbeiten Mediziner und Biologen vor allem an der Entwicklung von bioverträglichen Gewebsersatzmaterialien für den Schädel-, Gesichts- und Halsbereich.

"An Knorpel klebt eigentlich gar nichts", beschreibt die Biologin Katja Otto das Ausgangsproblem eines der Forschungsprojekte, die gegenwärtig im Labor bearbeitet werden. Da aber gerade bei Operationen im Gesichtsbereich häufig innere Oberflächen von Schleimhaut oder Bindegewebe miteinander verbunden werden müssen, sich diese Gewebe jedoch nur bedingt nähen lassen, wäre ein verträglicher und gut zu handhabender Gewebeklebstoff ein großer Fortschritt.

Hohe Anforderungen an Gewebekleber

Genau daran arbeiten die Forscher im Biomateriallabor gemeinsam mit Partnern in der Industrie. Die Anforderungen an eine solche Klebesubstanz sind hoch. Sie muss natürlich vor allem eine belastbare Verbindung der Gewebe im feuchten Milieu schaffen. "Gängige Klebstoffe wie der körpereigene Fibrinklebstoff oder Klebestoffe für Hautwunden versagen hier", so Katja Otto. "Wir verkleben Gewebeproben von Schweinen mit neu modifizierten Substanzen und messen die mechanische Belastbarkeit der Klebeverbindung."

Zu diesem funktionellen Test kommen zahlreiche Verträglichkeitstests: Der Kleber muss gut abbaubar und ungiftig sein, darf weder Krebs noch Allergien auslösen oder Erbmaterial schädigen. "Neben der Materialentwicklung arbeiten wir gemeinsam mit unseren Kooperationspartnern auch an den notwendigen Applikationssystemen und sicheren Dosiertechniken für minimal-invasive Operationsmethoden", betont Oberärztin Dr. Gerlind Schneider, die Leiterin des Labors. Bis zum Projektende sollen die vorklinische Erprobung der Gewebeklebstoffe abgeschlossen und die Operationstechnik marktreif sein.

Wegen der Vielzahl hochempfindlicher Gewebe mit verschiedensten Funktionen für Kommunikation, Sinneswahrnehmung und Ästhetik ist die Chirurgie im HNO-Bereich eine besondere Herausforderung. Das treibt auch die Suche nach geeigneten Implantatmaterialien an. In den 1980er Jahren entwickelten und testeten Jenaer HNO-Ärzte in ihrem Biomateriallabor zusammen mit Jenaer Glaschemikern Bioverit®, eine maschinell bearbeitbare biokompatible Glaskeramik, die seitdem vielfach erfolgreich als Knochenersatz eingesetzt wurde.

Schädelimplantate aus dem Drucker

In einem aktuellen Verbundprojekt wird an einem Material geforscht, das Bioverit®-Implantate, die aufwändig individuell bearbeitet werden müssen, in vielen Fällen ersetzen könnte. Die Wissenschaftler wollen Implantate für Knochenersatz im Schädelbereich drucken, maßgenau nach dem Bild aus dem Computer-Tomographen. "Schicht für Schicht entstehen die Implantate", erklärt Dirk Linde das 3D-Druckverfahren. "Wie beim Knochenmaterial sorgt die Kombination aus Mineralien und Bindesubstanz für Festigkeit und Elastizität." Neben der günstigen Herstellungsweise hat das Material wesentliche Vorteile zum ebenfalls häufig eingesetzten Titan: "Das Metall irritiert das Temperaturempfinden und es behindert durch Streueffekte Strahlentherapien, die nach Tumoroperationen oft notwendig sind", so der Biologe.

Die Erweiterung des Labors um einen zusätzlichen Raum verbessert die Möglichkeiten vor allem für die Probenbearbeitung und -analyse. Den drei Mitarbeitern stehen nun Arbeitsplätze zur Präparation von Hart- und Weichgeweben zur Verfügung. "So ist es uns zum Beispiel möglich zu beurteilen, wie schnell und wie gut die in vivo getesteten Schädelimplantate einwachsen und wie das Material reagiert, wenn es mit Gewebsflüssigkeit in Berührung kommt", nennt Dirk Linde nur einen Aspekt, den die Biomaterialspezialisten untersuchen müssen, bevor das Implantatmaterial klinisch getestet werden kann.

Trainingsmodelle zum Ohren-Anlegen

Auch ein drittes Entwicklungsprojekt zielt auf die Erprobung vor der Einbeziehung von Patienten. Die Wissenschaftler im Biomateriallabor arbeiten an anatomischen Trainingsmodellen, mit denen angehende Ärzte Operationen an Gesichtshaut oder Ohrmuschel üben können. "Bis jetzt lernt der Medizinernachwuchs durch intensives Zuschauen", so Oberärztin Gerlind Schneider. "Es gibt zwar einfache Hautmodelle zum Üben von Nähten oder Knoten, aber nichts, das der komplizierten Topografie am Kopf nahe kommt."

Hautfarbene Kunststoffgesichter auf dem Tisch zeugen von den ersten Erfolgen. Die Biologin Sibylle Voigt: "Das Material muss sich nähen lassen. Bei Tests waren erfahrene Operateure beeindruckt von unserer Kunsthaut." In einem nächsten Schritt wollen die Forscher das Material mehrschichtig wie Haut gestalten und wichtige Nervenbahnen und Gefäße berücksichtigen. Am Ende sollen Standard-OP-Übungssets entstehen, zum Beispiel für das Anlegen abstehender Ohren.

"Die Bedürfnisse der Patienten und die Arbeit im Operationssaal sind ein wichtiger Motor für die Forschung an neuen Materialien und Technologien. Im Interesse der Patienten sind wir immer offen für neue Ideen und Kooperationen", betont Oberärztin Gerlind Schneider.

Kontakt:
Oberärztin Dr. Gerlind Schneider
Klinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Jena
07740 Jena
Tel.: 03641/935015
E-Mail: gerlind.schneider[at]med.uni-jena.de

Uta von der Gönna | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen