Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Resistenz gegen Chemoprävention: Wenn sich Tumorzellen nicht bremsen lassen

27.05.2011
In der Krebstherapie kommen Naturstoffe vor allem im Rahmen der Chemoprävention zum Einsatz: Dann sollen Vorläufer von Krebszellen daran gehindert werden, Tumoren oder Metastasen zu bilden. Ein Team um die Privatdozentin Dr. Beatrice Bachmeier vom Klinikum der Universität München und Professor Thomas Efferth von der Johannes Gutenberg-Universität Mainz konnte nun einen Mechanismus nachweisen, mit dessen Hilfe Tumorzellen einer Chemoprävention entgehen – und die Therapie versagen lassen.

Untersucht wurden Brustkrebszellen, die nicht auf das Präparat Artesunate reagieren. Dieses Mittel wird auch als Malaria-Medikament eingesetzt und ist den natürlich vorkommenden Artemisinen verwandt, einer in Beifußgewächsen vorkommenden Pflanzenstoffgruppe.

Artemisine verursachen praktisch keine Nebenwirkungen und könnten auch von Risikopatienten dauerhaft eingenommen werden, um das Krebsrisiko zu senken oder dem Fortschritt der Erkrankung entgegenzuwirken. Wie das Team um Bachmeier und Efferth nun aber zeigen konnte, werden manche Tumorzellen mithilfe des Transkriptionsfaktors NF-κB dagegen resistent. Dieses Molekül ist in gesunden Zellen weniger aktiv als in Krebszellen – und gilt bereits als potenzielles Ziel in der Tumortherapie.

Wird NF-κB aktiviert, kann die Zelle nicht mehr in die Apoptose getrieben werden, den programmierten Zelltod – und unterliegt damit nicht mehr der Wachstumskontrolle des Körpers. „Wir haben nun den für die Resistenz verantwortlichen Faktor identifiziert“, sagt Bachmeier. „Wir hoffen nun, dass dies die Möglichkeit eröffnet, gezielt die Kontrolle über den Transkriptionsfaktor zu gewinnen, so dass die Chemoprävention wieder wirken kann.“ (suwe) (PloS One, 26. Mai 2011)

Publikation:
„Development of resistance towards artesunate in MDA-MB-231 human breast cancer cells”;
Beatrice Bachmeier, Iduna Fichtner, Peter H. Killian, Emanuel Kronski, Ulrich Pfeffer, Thomas Efferth;

PloS One; 26.5.2011

Nach Ablauf der Sperrfrist ist die Publikation zu finden unter: http://dx.plos.org/10.1371/journal.pone.0020550

Ansprechpartner:
PD Dr. Beatrice Bachmeier
Abteilung für Klinische Chemie und Klinische Biochemie des Klinikums der Universität München
Tel.: 089 / 5160 – 2650
Mobil: 0170 / 2839740
E-Mail: bachmeier@med.uni-muenchen.de oder bachmeier.beatrice@gmail.com
Prof. Dr. Thomas Efferth
Abteilung für Pharmazeutische Biologie der Johannes Gutenberg-Universität Mainz
Tel.: 06131 / 39 – 25751
E-Mail: efferth@uni-mainz.de

Luise Dirscherl | Uni München
Weitere Informationen:
http://dx.plos.org/10.1371/journal.pone.0020550
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie