Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise durch Resonanz

29.08.2014

Wissenschaftler finden Erklärung, wie Nervenzellen über große Entfernung miteinander kommunizieren

Seit Jahrzehnten rätselt die Wissenschaft, wie Nervenzellen im Gehirn über weite Distanzen miteinander kommunizieren. Denn so, wie Netzwerke von Nervenzellen verschaltet sind und einzelne Zellen auf Impulse reagieren, ist es eigentlich unmöglich.


Resonanz in der Aktivität von Nervenzellen (links) erlaubt, dass Impulse im Gehirn über weite Entfernungen übertragen werden, etwa von der Rückseite des Gehirns in Richtung Stirn während der Verarbeitung optischer Reize. Quelle: Gunnar Grah/BLBT

Wissenschaftler aus Deutschland und Frankreich geben nun eine mögliche Antwort, wie das Gehirn trotzdem funktionieren kann: indem es die Kraft der Resonanz ausnutzt. Die Neurowissenschaftler Gerald Hahn, Alejandro F. Bujan und ihre Kollegen beschreiben in der Fachzeitschrift „PLoS Computational Biology“, dass Resonanz die Schwingungen in der Aktivität der Nervenzellen so verstärken kann, dass sich die Signale weiter ausbreiten.

Die Teams vom Exzellenzcluster BrainLinks-BrainTools und dem Bernstein Center der Universität Freiburg sowie der Abteilung UNIC des französischen Centre national de la recherche scientifique in Gif-sur-Yvette simulierten im Computer mehrere Netzwerke von Nervenzellen und untersuchten, wie sie Signale weiterleiten.

Frühere Vermutungen, wie Information durch das Gehirn reist, waren unrealistisch: Entweder mussten Forscherinnen und Forscher starke Verbindungen zwischen weit entfernten Hirnarealen annehmen, für die es keine Hinweise gab, oder sie setzten einen globalen Mechanismus im Gehirn voraus, der Hirnareale in miteinander verbundene Schwingungen versetzt.

Wie dies vonstattengehen soll, konnte jedoch niemand erklären. Hahn und Bujan benötigten in ihrer Simulation weder unrealistische Netzwerkeigenschaften noch einen Schwingungsgenerator im Gehirn. Die Forscher fanden stattdessen heraus, dass Resonanz der Schlüssel zur Langstreckenkommunikation in Netzwerken sein könnte, die wie das Gehirn über relativ wenige und schwache Verbindungen verfügen.

Nicht alle Nervenzellen regen andere an, aktiv zu werden; manche wirken auch hemmend. Das Zusammenspiel von Erregung und Hemmung kann die Aktivität in einem Netzwerk um einen bestimmten Wert schwingen lassen. Netzwerke haben für gewöhnlich eine Frequenz, bei der die Schwingungen besonders stark sind, so wie auch eine gespannte Geigensaite eine bevorzugte Frequenz besitzt.

Schwingt die Aktivität mit dieser Frequenz, breiten sich Pulse viel weiter aus. Die Wissenschaftler gehen davon aus, dass in bestimmten Fällen die Resonanzverstärkung bei schwingenden Signalen die einzige Möglichkeit für eine Kommunikation über weite Strecken sein könnte. Sie vermuten darüber hinaus, dass das Gehirn durch die Fähigkeit eines Netzwerks, seine bevorzugte Frequenz zu verändern, Informationen zu verschiedenen Zeiten auf unterschiedliche Weise verarbeiten kann.

Originalveröffentlichung:
Hahn G, Bujan AF, Frégnac Y, Aertsen A, Kumar A (2014) Communication through resonance in spiking neuronal networks. PLoS Comp. Biol.
Doi:10.1371/journal.pcbi.1003811 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003811

 
Kontakt:
Dr. Arvind Kumar
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9574
Fax: 0761/203-9559
E-Mail: arvind.kumar@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2014/pm.2014-08-29.93-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Erste Verteidigungslinie gegen Grippe weiter entschlüsselt
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Neue Behandlung mit Immunglobulinen hilft gegen Entzündung der weißen Hirnsubstanz bei Kindern
21.02.2018 | Universität Witten/Herdecke

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics