Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise durch Resonanz

29.08.2014

Wissenschaftler finden Erklärung, wie Nervenzellen über große Entfernung miteinander kommunizieren

Seit Jahrzehnten rätselt die Wissenschaft, wie Nervenzellen im Gehirn über weite Distanzen miteinander kommunizieren. Denn so, wie Netzwerke von Nervenzellen verschaltet sind und einzelne Zellen auf Impulse reagieren, ist es eigentlich unmöglich.


Resonanz in der Aktivität von Nervenzellen (links) erlaubt, dass Impulse im Gehirn über weite Entfernungen übertragen werden, etwa von der Rückseite des Gehirns in Richtung Stirn während der Verarbeitung optischer Reize. Quelle: Gunnar Grah/BLBT

Wissenschaftler aus Deutschland und Frankreich geben nun eine mögliche Antwort, wie das Gehirn trotzdem funktionieren kann: indem es die Kraft der Resonanz ausnutzt. Die Neurowissenschaftler Gerald Hahn, Alejandro F. Bujan und ihre Kollegen beschreiben in der Fachzeitschrift „PLoS Computational Biology“, dass Resonanz die Schwingungen in der Aktivität der Nervenzellen so verstärken kann, dass sich die Signale weiter ausbreiten.

Die Teams vom Exzellenzcluster BrainLinks-BrainTools und dem Bernstein Center der Universität Freiburg sowie der Abteilung UNIC des französischen Centre national de la recherche scientifique in Gif-sur-Yvette simulierten im Computer mehrere Netzwerke von Nervenzellen und untersuchten, wie sie Signale weiterleiten.

Frühere Vermutungen, wie Information durch das Gehirn reist, waren unrealistisch: Entweder mussten Forscherinnen und Forscher starke Verbindungen zwischen weit entfernten Hirnarealen annehmen, für die es keine Hinweise gab, oder sie setzten einen globalen Mechanismus im Gehirn voraus, der Hirnareale in miteinander verbundene Schwingungen versetzt.

Wie dies vonstattengehen soll, konnte jedoch niemand erklären. Hahn und Bujan benötigten in ihrer Simulation weder unrealistische Netzwerkeigenschaften noch einen Schwingungsgenerator im Gehirn. Die Forscher fanden stattdessen heraus, dass Resonanz der Schlüssel zur Langstreckenkommunikation in Netzwerken sein könnte, die wie das Gehirn über relativ wenige und schwache Verbindungen verfügen.

Nicht alle Nervenzellen regen andere an, aktiv zu werden; manche wirken auch hemmend. Das Zusammenspiel von Erregung und Hemmung kann die Aktivität in einem Netzwerk um einen bestimmten Wert schwingen lassen. Netzwerke haben für gewöhnlich eine Frequenz, bei der die Schwingungen besonders stark sind, so wie auch eine gespannte Geigensaite eine bevorzugte Frequenz besitzt.

Schwingt die Aktivität mit dieser Frequenz, breiten sich Pulse viel weiter aus. Die Wissenschaftler gehen davon aus, dass in bestimmten Fällen die Resonanzverstärkung bei schwingenden Signalen die einzige Möglichkeit für eine Kommunikation über weite Strecken sein könnte. Sie vermuten darüber hinaus, dass das Gehirn durch die Fähigkeit eines Netzwerks, seine bevorzugte Frequenz zu verändern, Informationen zu verschiedenen Zeiten auf unterschiedliche Weise verarbeiten kann.

Originalveröffentlichung:
Hahn G, Bujan AF, Frégnac Y, Aertsen A, Kumar A (2014) Communication through resonance in spiking neuronal networks. PLoS Comp. Biol.
Doi:10.1371/journal.pcbi.1003811 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003811

 
Kontakt:
Dr. Arvind Kumar
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9574
Fax: 0761/203-9559
E-Mail: arvind.kumar@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2014/pm.2014-08-29.93-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue statistische Verfahren zur Überprüfung von Arzneimittel-Generika
25.07.2017 | Ruhr-Universität Bochum

nachricht Chancen für die Behandlung von Kinderdemenz
24.07.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie