Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise durch Resonanz

29.08.2014

Wissenschaftler finden Erklärung, wie Nervenzellen über große Entfernung miteinander kommunizieren

Seit Jahrzehnten rätselt die Wissenschaft, wie Nervenzellen im Gehirn über weite Distanzen miteinander kommunizieren. Denn so, wie Netzwerke von Nervenzellen verschaltet sind und einzelne Zellen auf Impulse reagieren, ist es eigentlich unmöglich.


Resonanz in der Aktivität von Nervenzellen (links) erlaubt, dass Impulse im Gehirn über weite Entfernungen übertragen werden, etwa von der Rückseite des Gehirns in Richtung Stirn während der Verarbeitung optischer Reize. Quelle: Gunnar Grah/BLBT

Wissenschaftler aus Deutschland und Frankreich geben nun eine mögliche Antwort, wie das Gehirn trotzdem funktionieren kann: indem es die Kraft der Resonanz ausnutzt. Die Neurowissenschaftler Gerald Hahn, Alejandro F. Bujan und ihre Kollegen beschreiben in der Fachzeitschrift „PLoS Computational Biology“, dass Resonanz die Schwingungen in der Aktivität der Nervenzellen so verstärken kann, dass sich die Signale weiter ausbreiten.

Die Teams vom Exzellenzcluster BrainLinks-BrainTools und dem Bernstein Center der Universität Freiburg sowie der Abteilung UNIC des französischen Centre national de la recherche scientifique in Gif-sur-Yvette simulierten im Computer mehrere Netzwerke von Nervenzellen und untersuchten, wie sie Signale weiterleiten.

Frühere Vermutungen, wie Information durch das Gehirn reist, waren unrealistisch: Entweder mussten Forscherinnen und Forscher starke Verbindungen zwischen weit entfernten Hirnarealen annehmen, für die es keine Hinweise gab, oder sie setzten einen globalen Mechanismus im Gehirn voraus, der Hirnareale in miteinander verbundene Schwingungen versetzt.

Wie dies vonstattengehen soll, konnte jedoch niemand erklären. Hahn und Bujan benötigten in ihrer Simulation weder unrealistische Netzwerkeigenschaften noch einen Schwingungsgenerator im Gehirn. Die Forscher fanden stattdessen heraus, dass Resonanz der Schlüssel zur Langstreckenkommunikation in Netzwerken sein könnte, die wie das Gehirn über relativ wenige und schwache Verbindungen verfügen.

Nicht alle Nervenzellen regen andere an, aktiv zu werden; manche wirken auch hemmend. Das Zusammenspiel von Erregung und Hemmung kann die Aktivität in einem Netzwerk um einen bestimmten Wert schwingen lassen. Netzwerke haben für gewöhnlich eine Frequenz, bei der die Schwingungen besonders stark sind, so wie auch eine gespannte Geigensaite eine bevorzugte Frequenz besitzt.

Schwingt die Aktivität mit dieser Frequenz, breiten sich Pulse viel weiter aus. Die Wissenschaftler gehen davon aus, dass in bestimmten Fällen die Resonanzverstärkung bei schwingenden Signalen die einzige Möglichkeit für eine Kommunikation über weite Strecken sein könnte. Sie vermuten darüber hinaus, dass das Gehirn durch die Fähigkeit eines Netzwerks, seine bevorzugte Frequenz zu verändern, Informationen zu verschiedenen Zeiten auf unterschiedliche Weise verarbeiten kann.

Originalveröffentlichung:
Hahn G, Bujan AF, Frégnac Y, Aertsen A, Kumar A (2014) Communication through resonance in spiking neuronal networks. PLoS Comp. Biol.
Doi:10.1371/journal.pcbi.1003811 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003811

 
Kontakt:
Dr. Arvind Kumar
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9574
Fax: 0761/203-9559
E-Mail: arvind.kumar@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2014/pm.2014-08-29.93-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Wachablösung im Immunsystem: wie Dendritische Zellen ihre Bewaffnung an Mastzellen übergeben
16.11.2017 | Universitätsklinikum Magdeburg

nachricht Wie Lungenkrebs zur Entstehung von Lungenhochdruck führt
16.11.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie