Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulatorischer Schlüssel der Myelinbildung im zentralen Nervensystem gefunden

05.03.2012
Mainzer Wissenschaftler haben einen Mechanismus identifiziert, der eine wichtige Rolle bei der Bildung von Myelin im zentralen Nervensystem spielt.

Myelin beschleunigt die Reizweiterleitung im Gehirn, indem es die Fortsätze der Nervenzellen, die Axone, umgibt und diese somit isoliert – vergleichbar mit der Plastikisolierung eines Kabels.

Ihre Ergebnisse haben die Wissenschaftler um Dr. Robin White vom Institut für Physiologie und Pathophysiologie der Universitätsmedizin Mainz und Univ.-Prof. Dr. Jacqueline Trotter, Leiterin der Abteilung Molekulare Zellbiologie/Biologie für Mediziner am Fachbereich Biologie der JGU Mainz, in der Zeitschrift Journal of Biological Chemistry veröffentlicht.

Damit Nervenzellen effizient Informationen über weite Distanzen übermitteln können, hat sich bei höheren Organismen die so genannte saltatorische Erregungsleitung entwickelt. Diese wird ermöglicht, indem die zur Reizweiterleitung spezialisierten axonalen Fortsätze der Nervenzellen in bestimmten Abständen von Myelin, einer Art Isolierschicht, umgeben sind. Bei Krankheiten wie Leukodystrophien oder Multipler Sklerose kommt es zu fehlerhaften Myelinbildungen während der Entwicklung oder ausbleibenden Reparaturmechanismen nach Schädigungen intakter Myelinstrukturen. Die aktuelle Arbeit der Mainzer Wissenschaftler leistet einen wesentlichen Beitrag zum Verständnis dieser komplexen molekularen Mechanismen der Myelinbildung.
Im zentralen Nervensystem entsteht Myelin dadurch, dass Oligodendrozyten, ein bestimmter Typ von Gehirnzellen, ihre Zellfortsätze mehrfach um die Axone der Nervenzellen wickeln und einen kompakten Stapel von Zellmembranen – die Myelinscheide – ausbilden. Es gibt zwei Hauptproteine, aus welchen Myelin gebildet wird, und deren Synthese unterschiedlich aktiviert und reguliert wird. Die vorliegende Arbeit beschäftigt sich mit der Synthese des so genannten MBP (Myelin Basisches Protein), welches der Stabilisierung der Myelinmembra-nen dient.

Um zu gewährleisten, dass Myelin ortsspezifisch und zum richtigen Zeitpunkt generiert wird, muss es bestimmte neuronale Signale geben, die die Syntheseleistung und räumliche Aus-richtung des Oligodendrozyten beeinflussen – im Fall des MBP scheint dies der Kontakt des Oligodendrozyten mit einem Axon zu sein. Durch diesen Kontakt wird eine Signalkaskade ausgelöst, die letztlich zur Synthese des MBP „vor Ort“ führt.
Wie diese Signalkaskade, die die Synthese von MBP auslöst und reguliert, genau aussieht, ist unklar – eine weitere wichtige Komponente des Signalweges haben die Mainzer Wissen-schaftler jedoch in ihrer aktuellen Arbeit identifiziert. „Unsere Untersuchungen haben gezeigt, dass das Protein ‚hnRNP F’ ein wichtiger Regulator der Synthese von MBP ist“, erläutert Dr. Robin White. „Für eine normale MBP-Synthese bedarf es bestimmter Mengen dieses Prote-ins, fehlt es oder ist zuviel davon da, ist die MBP-Synthese nachhaltig gestört.“

„Darüber hinaus ist bekannt, dass auch das zweite Hauptmyelinprotein, das PLP (Proteoli-pid-Protein), durch das Eiweiß ‚hnRNP F’ beeinflusst wird“, betont Constantin Gonsior, der im Rahmen seiner Doktorarbeit an diesem Projekt forschte. „Dass beide Hauptmyelinkom-ponenten durch dieses Protein reguliert werden, unterstreicht dessen große Bedeutung für die Myelinsynthese insgesamt.“

Die Aufklärung der molekularen Grundlagen der Myelinbildung ist für verschiedene neurolo-gische Erkrankungen von Bedeutung, bei denen es zu einem Verlust der schützenden Mye-linschicht kommt, wie beispielsweise der Multiplen Sklerose (MS) oder Leukodystrophien. Dies gilt besonders für Strategien, welche die Remyelinisierung und damit die Regeneration des geschädigten Nervengewebes zum Ziel haben. Denn der Verlust der Myelinschicht kann zunächst meistens durch Remyelinisierung repariert werden, dies ist jedoch mit fortschrei-tendem Krankheitsverlauf aus ungeklärten Ursachen nicht mehr möglich.

„Interessanterwei-se findet man bei Patienten, die an einer bestimmten Form der Leukodystrophie, der soge-nannten ‚Vanishing White Matter Disease’, leiden, eine Mutation, die dazu führt, dass hnRNP F in geringeren Mengen gebildet wird“, so Univ.-Prof. Dr. Jacqueline Trotter. „Unser Beitrag hilft einen molekularen Erklärungsansatz für Myelinisierungsdefizite in diesen Patienten zu liefern.“

Kontakt
Dr. Robin White, Institut für Physiologie und Pathophysiologie, Universitätsmedizin Mainz,
Telefon 0 6131 39 27 170, E-Mail: white@uni-mainz.de

Univ.-Prof. Dr. Jacqueline Trotter, Leiterin der Abteilung Molekulare Zellbiologie/Biologie für Mediziner am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz,
Telefon 0 6131 39 20 263, E-Mail: trotter@uni-mainz.de

Pressekontakt
Dr. Renée Dillinger-Reiter, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige Einrichtung dieser Art in Rheinland-Pfalz. Mehr als 60 Kliniken, Institute und Abteilungen gehören zur Universitätsmedi-zin Mainz. Mit der Krankenversorgung untrennbar verbunden sind Forschung und Lehre. Rund 3.500 Studierende der Medizin und Zahnmedizin werden in Mainz kontinuierlich ausgebildet.

Caroline Bahnemann | idw
Weitere Informationen:
http://www.unimedizin-mainz.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

nachricht Tempo-Daten für das „Navi“ im Kopf
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie