Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulatorischer Schlüssel der Myelinbildung im zentralen Nervensystem gefunden

05.03.2012
Mainzer Wissenschaftler haben einen Mechanismus identifiziert, der eine wichtige Rolle bei der Bildung von Myelin im zentralen Nervensystem spielt.

Myelin beschleunigt die Reizweiterleitung im Gehirn, indem es die Fortsätze der Nervenzellen, die Axone, umgibt und diese somit isoliert – vergleichbar mit der Plastikisolierung eines Kabels.

Ihre Ergebnisse haben die Wissenschaftler um Dr. Robin White vom Institut für Physiologie und Pathophysiologie der Universitätsmedizin Mainz und Univ.-Prof. Dr. Jacqueline Trotter, Leiterin der Abteilung Molekulare Zellbiologie/Biologie für Mediziner am Fachbereich Biologie der JGU Mainz, in der Zeitschrift Journal of Biological Chemistry veröffentlicht.

Damit Nervenzellen effizient Informationen über weite Distanzen übermitteln können, hat sich bei höheren Organismen die so genannte saltatorische Erregungsleitung entwickelt. Diese wird ermöglicht, indem die zur Reizweiterleitung spezialisierten axonalen Fortsätze der Nervenzellen in bestimmten Abständen von Myelin, einer Art Isolierschicht, umgeben sind. Bei Krankheiten wie Leukodystrophien oder Multipler Sklerose kommt es zu fehlerhaften Myelinbildungen während der Entwicklung oder ausbleibenden Reparaturmechanismen nach Schädigungen intakter Myelinstrukturen. Die aktuelle Arbeit der Mainzer Wissenschaftler leistet einen wesentlichen Beitrag zum Verständnis dieser komplexen molekularen Mechanismen der Myelinbildung.
Im zentralen Nervensystem entsteht Myelin dadurch, dass Oligodendrozyten, ein bestimmter Typ von Gehirnzellen, ihre Zellfortsätze mehrfach um die Axone der Nervenzellen wickeln und einen kompakten Stapel von Zellmembranen – die Myelinscheide – ausbilden. Es gibt zwei Hauptproteine, aus welchen Myelin gebildet wird, und deren Synthese unterschiedlich aktiviert und reguliert wird. Die vorliegende Arbeit beschäftigt sich mit der Synthese des so genannten MBP (Myelin Basisches Protein), welches der Stabilisierung der Myelinmembra-nen dient.

Um zu gewährleisten, dass Myelin ortsspezifisch und zum richtigen Zeitpunkt generiert wird, muss es bestimmte neuronale Signale geben, die die Syntheseleistung und räumliche Aus-richtung des Oligodendrozyten beeinflussen – im Fall des MBP scheint dies der Kontakt des Oligodendrozyten mit einem Axon zu sein. Durch diesen Kontakt wird eine Signalkaskade ausgelöst, die letztlich zur Synthese des MBP „vor Ort“ führt.
Wie diese Signalkaskade, die die Synthese von MBP auslöst und reguliert, genau aussieht, ist unklar – eine weitere wichtige Komponente des Signalweges haben die Mainzer Wissen-schaftler jedoch in ihrer aktuellen Arbeit identifiziert. „Unsere Untersuchungen haben gezeigt, dass das Protein ‚hnRNP F’ ein wichtiger Regulator der Synthese von MBP ist“, erläutert Dr. Robin White. „Für eine normale MBP-Synthese bedarf es bestimmter Mengen dieses Prote-ins, fehlt es oder ist zuviel davon da, ist die MBP-Synthese nachhaltig gestört.“

„Darüber hinaus ist bekannt, dass auch das zweite Hauptmyelinprotein, das PLP (Proteoli-pid-Protein), durch das Eiweiß ‚hnRNP F’ beeinflusst wird“, betont Constantin Gonsior, der im Rahmen seiner Doktorarbeit an diesem Projekt forschte. „Dass beide Hauptmyelinkom-ponenten durch dieses Protein reguliert werden, unterstreicht dessen große Bedeutung für die Myelinsynthese insgesamt.“

Die Aufklärung der molekularen Grundlagen der Myelinbildung ist für verschiedene neurolo-gische Erkrankungen von Bedeutung, bei denen es zu einem Verlust der schützenden Mye-linschicht kommt, wie beispielsweise der Multiplen Sklerose (MS) oder Leukodystrophien. Dies gilt besonders für Strategien, welche die Remyelinisierung und damit die Regeneration des geschädigten Nervengewebes zum Ziel haben. Denn der Verlust der Myelinschicht kann zunächst meistens durch Remyelinisierung repariert werden, dies ist jedoch mit fortschrei-tendem Krankheitsverlauf aus ungeklärten Ursachen nicht mehr möglich.

„Interessanterwei-se findet man bei Patienten, die an einer bestimmten Form der Leukodystrophie, der soge-nannten ‚Vanishing White Matter Disease’, leiden, eine Mutation, die dazu führt, dass hnRNP F in geringeren Mengen gebildet wird“, so Univ.-Prof. Dr. Jacqueline Trotter. „Unser Beitrag hilft einen molekularen Erklärungsansatz für Myelinisierungsdefizite in diesen Patienten zu liefern.“

Kontakt
Dr. Robin White, Institut für Physiologie und Pathophysiologie, Universitätsmedizin Mainz,
Telefon 0 6131 39 27 170, E-Mail: white@uni-mainz.de

Univ.-Prof. Dr. Jacqueline Trotter, Leiterin der Abteilung Molekulare Zellbiologie/Biologie für Mediziner am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz,
Telefon 0 6131 39 20 263, E-Mail: trotter@uni-mainz.de

Pressekontakt
Dr. Renée Dillinger-Reiter, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige Einrichtung dieser Art in Rheinland-Pfalz. Mehr als 60 Kliniken, Institute und Abteilungen gehören zur Universitätsmedi-zin Mainz. Mit der Krankenversorgung untrennbar verbunden sind Forschung und Lehre. Rund 3.500 Studierende der Medizin und Zahnmedizin werden in Mainz kontinuierlich ausgebildet.

Caroline Bahnemann | idw
Weitere Informationen:
http://www.unimedizin-mainz.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen