Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Perfekter Spiegel" revolutioniert Laser-Chirurgie

22.12.2008
Militärische Glasfasertechnologie erleichtert Gehirnoperationen

Yoel Fink, Forscher am Research Laboratory of Electronics des Massachusetts Institute of Technology (MIT), hat eine technische Innovation vorgestellt, die den Bereich der minimal-invasiven Laser-Chirugie in der Medizin revolutionieren könnte.

Konkret handelt es sich dabei um ein auf Glasfasertechnologie basierendes optisches Gerät in Kugelschreiberform, das es Chirurgen erlaubt, die bei schwierigen Gehirn-Operationen eingesetzten Laser ohne großen Aufwand zu manipulieren. Das Grundkonzept für die neue Entwicklung stammt dabei aus dem militärischen Forschungsbereich und wurde nun auch für medizinische Zwecke adaptiert. Herzstück ist eine von Fink bereits 1995 entwickelte optische Vorrichtung, die als "perfekter Spiegel" bezeichnet wird und die sich durch spezielle Brechungseigenschaften für Licht und elektromagnetische Energieformen auszeichnet.

"Es gibt heute eigentlich kein Gebiet innerhalb der operativen Chirurgie mehr, wo keine Lasertechnologie zum Einsatz kommt", stellt Hartwig Bauer, Generalsekretär der Deutschen Gesellschaft für Chirurgie (DGCH), im Gespräch mit pressetext fest. Der bekannteste Anwendungsbereich sei sicherlich die Augenmedizin, wo der Laser beispielsweise zur Korrektur von Fehlsichtigkeiten eingesetzt werde.

"Laser haben vor allem als Schneidinstrument sehr gute Einsatzmöglichkeiten in der Chirurgie. Dies trifft insbesondere auf die Gehirnchirurgie zu, wo man millimetergenau arbeiten muss", betont Bauer. In diesem Bereich sei eine Einbindung von Robotik- und Automationselementen mittlerweile ungemein wichtig geworden. "Das berührungsfreie Schneiden mit einem Laser hat den Vorteil, dass das Hirngewebe nicht in dem Ausmaß geschädigt wird wie bei einer herkömmlichen Operation. Bei richtiger Dosierung wird zudem auch die Blutgerinnung begünstigt", fasst Bauer zusammen.

"Der perfekte Spiegel absorbiert kein Licht, sondern reflektiert es aus allen Winkeln", erklärt Fink in einem aktuellen CNN-Interview. Ursprünglich sei diese Technologie eigentlich im Auftrag des US-Verteidigungsministeriums entwickelt worden, um Laserstrahlen feindlicher Geschütze ablenken zu können. Doch als man entdeckt habe, dass die Vorrichtung nicht nur Licht, sondern generell jede Form von elektromagnetischer Energie reflektiert, sei eine Nutzung auch abseits militärischer Zwecke sinnvoll geworden. "Wir sind dann recht bald auf die minimal-invasive Gehirn-Chirurgie gekommen, da in diesem Bereich vielfach bereits Laser anstelle von Skalpellen eingesetzt werden, um verschiedene Krankheitserscheinungen wie etwa Tumore zu bekämpfen", schildert Fink.

Wie sinnvoll der Einsatz des perfekten Spiegels in der Medizin tatsächlich ist, zeigen verschiedene Testläufe an US-Krankenhäusern. "Als ich das von Fink entwickelte optische Tool zum ersten Mal gesehen habe, war ich sehr skeptisch. Nach den ersten Tests bin ich allerdings überwältigt von dieser Entwicklung", meint Stanley Shapshay, Hals-, Nasen- und Ohrenarzt aus den USA. An die 100 Operationen habe er mittlerweile mit dem "Perfect Mirror Laser" durchgeführt. "Das Gerät lässt sich sogar leichter bedienen als ein Skalpel und ermöglicht es dem Chirurgen, nahezu jeden Gewebebereich des menschlichen Körpers zu erreichen", so Shapshay.

Markus Steiner | pressetext.deutschland
Weitere Informationen:
http://www.rle.mit.edu
http://www.dgch.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics