Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Punktgenau gegen das Zittern - Bildgebendes Verfahren verbessert Tremorchirurgie

12.09.2014

Freiburger Forscher publizieren in Neurosurgery

Als Patient mitzuerleben, wie Ärzte ihn am offenen Schädel operieren, ist keine schöne Vorstellung. Für viele Menschen, die an Tremorerkrankungen leiden, ist die Tiefen Hirnstimulation bei vollem Bewusstsein momentan jedoch die einzige Operationsmethode, wenn Medikamenten und jahrelanges Leiden nicht mehr erträglich sind.

Einem Freiburger Forscherteam um Prof. Dr. Volker Arnd Coenen, Ärztlicher Leiter der Abteilung für Stereotaktische und Funktionelle Neurochirurgie am Universitätsklinikum Freiburg, ist es nun gelungen, mithilfe eines bildgebenden Verfahrens das per Tiefer Hirnstimulation zu aktivierende Nervenfaserbündel im Gehirn genauer aufzuspüren.

Langfristig soll dadurch die Tiefen Hirnstimulation in Vollnarkose durchgeführt werden können. Zusätzlich wird die Blutungsgefahr reduziert. Die Ergebnisse ihrer Studie haben die Freiburger Forscher in der renommierten Fachzeitschrift Neurosurgery publiziert.

In der Studie zur Behandlung des tremordominanten Parkinsonsyndroms und von essentiellen Tremorerkrankungen mittels der Tiefen Hirnstimulation wurde die bisherige Methode zur Aufspürung des Tremorbündels mit der Diffusionstensortraktografie verglichen.

„Dieses bildgebende Verfahren liefert so exakte Bilder, dass die Lage des Tremorbündels im Gehirn bis auf weniger als zwei Millimeter genau bestimmt werden kann. Dadurch werden weniger Pfade der Elektrode auf dem Weg zum Zielgewebe im Gehirn notwendig, wodurch das Risiko von Gefäßblutungen verringert wird“, sagt Prof. Coenen.

Bisher kann das Zielgebiet nur indirekt anhand von Atlasdaten bestimmt werden. Bei vollem Bewusstsein des Patienten wird der Schädel geöffnet und die Tiefen Hirnstimulation durchgeführt. Mit der Elektrode werden Regionen angesteuert, an denen bei Stimulation eine Tremorreduktion vermutet wird.

Reagiert die Stelle nicht auf die Stimulation, wird die Elektrode entfernt und von der Oberfläche muss über einen neuen Pfad zu einer neuen Stelle durchgedrungen werden. Jede einzelne Testung vergrößert die Gefahr einer Gefäßverletzung und damit einer Gefäßblutung. Mit der neuen Methode wird die Operation für Betroffene in Zukunft sicherer, da die tremorreduzierende Bündelstruktur jetzt hochgenau und direkt dargestellt werden kann.

Die Freiburger Forscher beginnen in Kürze zwei klinische Studien zum Essentiellen Tremor und zur Parkinson-Erkrankung, bei denen diese Technologie angewandt wird. Die Studien sollen die jetzigen Ergebnisse verfestigen.

Die Diffusionstensortraktografie ist ein bildgebendes Verfahren, das mit Hilfe der Magnetresonanztomografie (MRT) die Diffusionsbewegung von Wassermolekülen in Körpergewebe misst und räumlich aufgelöst darstellt. Sie ist besonders für die Untersuchung des Gehirns geeignet, da sich das Diffusionsverhalten im Gewebe bei einigen Erkrankungen des zentralen Nervensystems charakteristisch verändert und die Richtungsabhängigkeit der Diffusion Rückschlüsse auf den Verlauf der großen Nervenfaserbündel erlaubt. Die Diffusionstensortraktografie hat sich bereits beim Aufspüren eines neuen Zielortes zur Stimulation des Gehirns bei Depressionen, dem medialen Vorderhirnbündel, bewährt.

Bei der Tiefen Hirnstimulation werden krankhafte Schwingungen von Nervengewebe mit feinen elektrischen Strömen beeinflusst und durchbrochen. Dazu wird ein Hirnschrittmacher implantiert. Der Vorteil der Tiefen Hirnstimulation ist eine dauerhafte, ununterbrochene Stimulation. Sobald diese aber ausgeschaltet wird, kehren die Symptome binnen Minuten zurück. Den Großteil der Zeit sind die Patienten bei der Implantation des Neurostimulators wach, denn „mit ihrer Hilfe kontrollieren wir den Sitz der Elektroden“, sagt Prof. Coenen.

„Wir setzen während der OP einen Testimpuls – wenn wir an der richtigen Stelle sind, verringern sich die Symptome des Patienten, zum Beispiel das Händezittern, augenblicklich.“ Bisher sei die Neurostimulation keine Alternative, sondern erst nach Ausschöpfen aller anderen Therapieformen sinnvoll. Doch Prof. Coenen ist sich sicher: „Die Tiefen Hirnstimulation wird als Therapie bei verschiedenen Störungen an Bedeutung gewinnen.“

Als Tremor wird das unbeabsichtigte, sich rhythmisch wiederholende Zusammenziehen einander entgegenwirkender Muskelgruppen bezeichnet. Den sogenannten physiologischen Tremor kann man messen, allerdings ist er kaum sichtbar. Sichtbar wird ein Tremor nur, wenn er als Symptom einer Erkrankung, wie zum Beispiel Parkinson, auftritt.

Die Arbeit mit dem Originaltitel „Modulation of the Cerebello-thalamo-cortical Network in Thalamic Deep Brain Stimulation for Tremor: A Diffusion Tensor Imaging Study” ist bereits online zu lesen und erscheint im Dezember auch in der Printausgabe von Neurosurgery.
DOI: 10.1227/NEU0000000000000540

Kontakt:
Prof. Dr. Volker Arnd Coenen
Ärztlicher Leiter
Abteilung Stereotaktische und Funktionelle Neurochirurgie
Telefon: 0761 270-50630
volker.coenen@uniklinik-freiburg.de

Weitere Informationen:

http://www.idw-online.de/de/news603164 Englische Version der Pressemitteilung

Inga Schneider | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uniklinik-freiburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise