Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein S100A1 macht den Herzmuskel wieder stark

20.07.2011
Wirksamkeit von Gentherapie bei Herzmuskelschwäche erwiesen / Heidelberger Kardiologen veröffentlichen Studie im Großtiermodell

Die chronische Herzmuskelschwäche kann künftig möglicherweise mit Hilfe der Gentherapie erfolgreich behandelt werden. Ein Forscherteam aus Heidelberg und Philadelphia unter Federführung von Professor Dr. Patrick Most von der Heidelberger Universitätsklinik für Kardiologie, Angiologie und Pneumologie (Ärztlicher Direktor: Prof. Dr. Hugo Katus) berichtet in der aktuellen Ausgabe der Zeitschrift „Science Translational“ über eine erfolgreiche Studie am Großtiermodell, bei der das Protein S100A1 mit Hilfe eines Virus als Genfähre in den geschwächten Herzmuskel eingebracht wurde und der Herzmuskel sich darauf wieder vollständig erholte. „Auf der Basis dieser positiven Ergebnisse planen wir nun eine klinische Studie, bei der die Sicherheit der Therapie am Menschen getestet wird“, erklären die beiden Hauptautoren der Studie, Professor Dr. Patrick Most und Dr. Sven Pleger.

Die chronische Herzmuskelschwäche ist eine der häufigsten Todesursachen. Bislang steht keine Therapie zur Verfügung, die den Verlauf der Erkrankung stoppen oder gar umkehren könnte. Das Protein S100A1 ist ein Treibstoff, der die Pumpleistung des Herzens erhöht: Es kontrolliert den Einstrom von Kalzium in den Herzmuskel, erhöht dadurch nicht nur die Schlagkraft des Herzens, sondern stabilisiert auch die Erregbarkeit des Herzens und passt die Energieproduktion an eine gesteigerte Herzleistung an.

Frühere Studien von Professor Most und Dr. Pleger haben bereits den Nachweis erbracht, dass der erkrankte Herzmuskel einen Mangel an S100A1 aufweist, der für den fortschreitenden Verlust der Herzkraft, die erhöhte Anfälligkeit für Rhythmusstörungen sowie den Energiemangel im erkrankten Herzmuskel verantwortlich ist.

Deutliche Erholung nach drei Monaten

In der aktuellen Studie an Schweinen wurde S100A1 mit Hilfe eines Virus als Genfähre direkt in die Blutbahn des Herzmuskels eingebracht. Auf diese Weise gelangt die genetische Information für S100A1 in den erkrankten Herzmuskel und wird dort aktiviert. Nach drei Monaten konnte bei den behandelten im Vergleich zu unbehandelten Tieren eine deutliche Erholung der Herzfunktion und eine Umkehr des Krankheitsprozesses festgestellt werden. Die Wissenschaftler gehen davon aus, dass diese Wirkung anhält.

„Bevor die therapeutische Gentherapie erstmals an Patienten eingesetzt werden kann, müssen weitere Sicherheitsprüfungen vorgenommen werden“, erklärt Professor Most. Mit dem Eintritt in erste klinische Sicherheitsstudien kann auf der Basis dieser Studie in ca. 2 Jahren gerechnet werden.

Literatur:
Patrick Most, Sven T. Pleger, Hugo A. Katus et.al.: Cardiac AAV1-S100A1 Gene Therapy Rescues Post-Ischemic Heart Failure in a Preclinical Large Animal Model. http://www.ScienceTranslationalMedicine.org, 20 July 2011, Vol 3, Issue 92
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/Dr-med-P-Most.8031.0.html
Ansprechpartner für Journalisten:
Professor Dr. Patrick Most
Medizinische Universitätsklinik
Kardiologie, Angiologie und Pneumologie
Center for Molecular and Translational Cardiology
Im Neuenheimer Feld 410
69120 Heidelberg
E-Mail: patrick.most@med.uni-heidelberg.de
Center for Translational Medicine
Department of Medicine
Center for Translational Medicine
(Cardiovascular Research)
Thomas Jefferson University
1025 Walnut Street
Philadelphia, PA 19107, USA
Dr. Sven Pleger
Medizinische Universitätsklinik
Kardiologie, Angiologie und Pneumologie
Im Neuenheimer Feld 410
69120 Heidelberg
Tel.: 06221 / 56 38863
E-Mail: sven.pleger@med.uni-heidelberg.de
Professor Dr. Hugo A. Katus
Ärztlicher Direktor der Abteilung Kardiologie, Angiologie und Pneumologie
Medizinische Universitätsklinik Heidelberg
Im Neuenheimer Feld 410
69120 Heidelberg
Tel.: 06221 / 56 86 70 (Sekretariat)
Fax: 06221 / 56 55 16
E-Mail: Sekretariat.Katus@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

nachricht Spezialisten-Zellen helfen Gedächtnis auf die Sprünge
17.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie