Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ohnmächtig gegenüber den Genen

16.04.2013
Ort für Ohnmachten: Eine deutsch-australische Forschergruppe hat unter maßgeblicher Beteiligung eines Marburger Wissenschaftlers herausgefunden, wo ein Gen sitzt, das für häufige Kreislaufzusammenbrüche verantwortlich ist. Die Forscher berichten über ihre Ergebnisse am 16. April 2013 in „Neurology“, der Medizinzeitschrift des US-amerikanischen Fachverbandes „American Academy of Neurology“.

Wer oft in Ohnmacht fällt, hat die Veranlagung hierzu nicht selten von Vater oder Mutter geerbt. „Meist spielen dabei mehrere Gene zusammen mit Umweltfaktoren eine Rolle“, erläutert Dr. Karl Martin Klein von der Philipps-Universität, Mitarbeiter des Epilepsiezentrums Hessen und Erstautor der aktuellen Studie.

In manchen Fällen reicht jedoch ein einziges Gen aus, um häufige Kreislaufkollapse hervorzurufen. Das fand die Gruppe heraus, indem sie Familien untersuchte, in denen derartige Anfälle gehäuft auftreten. Die Wissenschaftler ermittelten auch den Ort auf den Chromosomen, an dem eine solche Erbanlage lokalisiert ist.

Kreislaufzusammenbrüche sind alles andere als selten: Jeder Vierte erleidet mindestens einmal im Leben einen solchen Anfall, bei dem sich die Blutgefäße reflexhaft weiten. Die Folge: Der Blutdruck sackt ab, der Kreislauf kollabiert, das Gehirn wird schlecht durchblutet und es kommt zu einer vorübergehenden Bewusstlosigkeit.

Die Autoren der aktuellen Studie untersuchten Familien, in denen bei mehreren Familienmitgliedern so genannte vasovagale Synkopen auftraten. Das sind Ohnmachtsanfälle, die zum Beispiel ausgelöst werden, wenn die Betroffenen Blut sehen oder lange stehen; weitere typische Auslöser sind Verletzungen und medizinische Maßnahmen, aber auch Furcht und Schmerzen.

„Familienstudien sind sehr aussagekräftig, um Genmutationen zu identifizieren, die starke Effekte hervorrufen“, erklärt Klein. „Die Identifizierung solcher Genmutationen kann dazu beitragen, die physiologischen Mechanismen aufzuklären, die Krankheiten zugrunde liegen, und neue Behandlungsmethoden zu entwickeln.“

Das Team erhob die Kranken- und Familiengeschichte von 44 Familien mittels ausführlicher Telefoninterviews, die die Wissenschaftler auf Basis eines Fragebogens führten. Bei sechs der untersuchten Familien ergab sich der Verdacht auf einen autosomal-dominanten Erbgang – bei ihnen genügt die Erbanlage eines Elternteils, damit sich auch bei der nächsten Generation dieselbe Krankheit ausprägt; die unauffällige Veranlagung des anderen Elternteils reicht nicht aus, um diese Disposition auszugleichen. Die Folge: Bis zur Hälfte der Kinder neigen zu Kreislaufzusammenbrüchen.
Um die hierfür verantwortlichen Gene zu identifizieren, untersuchten die Forscher in fünf der betroffenen Familien das Genom mit molekulargenetischen Methoden. In der größten dieser Familien lässt sich der Hang zu Ohnmachtsanfällen auf einen bestimmten Chromosomenabschnitt zurückführen; das ursächliche Gen konnte bisher nicht identifiziert werden. „Bei zwei anderen Familien spielt derselbe Chromosomenabschnitt jedoch keine Rolle“, führt Klein aus; er schließt daraus, dass verschiedene Gene autosomal dominante Ohnmachtsanfälle auslösen können. „Da bei sechs von 44 betroffenen Familien ein autosomal-dominanter Erbgang vorliegt, kann man davon ausgehen, dass dies keine Ausnahmefälle sind“, konstatiert Klein.

Vor Kurzem hatten die Autoren bereits eine Studie über Ohnmacht veröffentlicht, in der sie eineiige mit zweieiigen Zwillingspaaren verglichen, bei denen jeweils mindestens ein Zwilling Ohnmachtsanfälle erlitten hat – das Ergebnis: Bei zwei Drittel der eineiigen Zwillingpaare sind beide Geschwister betroffen – doppelt so häufig wie bei zweieiigen Zwillingen. Auch dieser Befund legt nahe, dass die Anfälligkeit genetisch verursacht ist; denn eineiige Zwillinge besitzen dieselben Gene, weil sie aus ein- und derselben Eizelle abstammen, im Gegensatz zu anderen Geschwistern.
Bei beiden Studien arbeitete Klein im Rahmen eines Forschungsaufenthalts bei Professor Dr. Samuel F. Berkovic in Melbourne mit australischen Wissenschaftlerinnen und Wissenschaftlern zusammen. Dieser Forschungsaufenthalt wurde durch die Deutsche Forschungsgemeinschaft und die University of Melbourne finanziell gefördert.

Originalveröffentlichung: Karl Martin Klein & al.: Autosomal dominant vasovagal syncope: Clinical features and linkage to chromosome 15q26, Neurology (16. April 2013), pp., DOI:

Zwillingsstudie: Karl Martin Klein & al.: Evidence for genetic factors in vasovagal syncope: a twin-family study, Neurology 79 (2012), 561-565, DOI: 10.1212/WNL.0b013e3182635789

Weitere Informationen:
Ansprechpartner: Dr. Karl Martin Klein,
Fachgebiet Neurologie
Tel.: 06421 28 26007 (Sekretariat)
E- Mail: kleink@staff.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www..uni-marburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie