Neutronenforschung offenbart Schwächen der Konservierung mit Formaldehyd bei Gehirngewebe

Die erste Analyse biologischer Prozesse in Gehirngewebe mit Neutronen am Institut Laue-Langevin (ILL) ergab, dass die übliche Verwendung von Konservierungsstoffen mit Formaldehyd wesentliche Eigenschaften, wie z.B. Wasserdiffusionsgeschwindigkeiten, verändert anstatt sie zu erhalten.

Die Abbildung von Zellwasser im Hirn ist wesentlich bei postmortalen Analysen verschiedener Gehirnerkrankungen wie Tumoren und Multipler Sklerose in Bezug auf frühere Diagnosen und Behandlungsmöglichkeiten. Diese Ergebnisse legen die Notwendigkeit nahe, bestehende Forschungen auf diesem Gebiet zu überprüfen.

Diese Ergebnisse sind die erste Stufe in der wegweisenden Verwendung von Neutronen durch ein Forscherteam, um die Bewegung von Zellwasser in Gehirngewebe in bisher nicht gekannten Details zu verstehen.

Die Bewegungsanalysen bilden die physikalische Grundlage der Diffusionsmagnet-resonanztomografie (dMRT – englisch dMRI = diffusion magnetic resonance imaging) und der Diagnose verschiedener Gehirnerkrankungen. Diese ersten Ergebnisse zeigen, dass Neutronen die Effekte der biologischen Prozesse auf einer 10.000-mal kleineren Skala als dMRT „sehen“ können. Künftig werden Neutronen am ILL dazu dienen, die Zellwasserdynamik in Ex-vivo-Proben von krankem Gehirngewebe mit bisher unerreichter Auflösung zu analysieren, was Ärzten helfen kann, erste Anzeichen dieser Krankheiten zu entdecken und Behandlungsmöglichkeiten zu prüfen.

Zellwasser ist ein wesentlicher Bestandteil unseres Körpers und sein Anteil kann in Gehirnregionen je nach ihrer spezifischen Zusammensetzung variieren. Wasser spielt eine Schlüsselrolle in der Zellregulierung und seine Verteilung und Bewegung ist ein genauer Indikator der Zellstruktur, da es mit verschiedenen Gewebekomponenten wie z.B. Membranen und Nervenfasern eine Wechselwirkung eingeht.

Die dMRT und andere bildgebende Verfahren nutzen Wasserdiffusion als Kontrastmittel zur Entdeckung und Charakterisierung verschiedener Gehirnerkrankungen (z.B. Ischämiesyndrom, Tumoren und – erst kürzlich – erbliche Prionkrankheiten) im Mikrometerbereich (100-fach kleiner als ein menschliches Haar). Auf dieser Skala kann jedoch der Beitrag der makromolekularen Komponenten nicht getrennt werden, sondern es wird über sie gemittelt.

Weil die erreichbare Auflösung bildgebender Standardverfahren zur Erkennung erster Anzeichen von Gehirnerkrankungen begrenzt ist, verwendete man zunehmend Konservierungsverfahren zur Untersuchung krankhafter Zustände in Ex-vivo-Proben. Jedoch beeinträchtigten Bedenken hinsichtlich des Einflusses dieser Konservierungsprozesse auf die grundlegenden Struktur- und Zusammensetzungseigenschaften der Gewebe das Vertrauen in diese Forschungsrichtung.

Um diese Bedenken auszuräumen, verglich Dr. Francesca Natali vom italienischen CNR (Consiglio Nazionale delle Ricerche) in Zusammenarbeit mit Dr. Yuri Gerelli, Wissenschaftler am Institut Laue-Langevin (ILL), dem weltweit führenden Zentrum für Neutronenforschung, Prof. J. Peters von der französischen Universität J. Fourier in Grenoble (UJF) und Dr. Calogero Stelletta von der Universität Padua (Italien) das Verhalten von Zellwasser in Ex-vivo-Rindergewebe. Es handelte sich dabei um Zellwasser, das mit zwei üblichen Verfahren konserviert wurde, nämlich durch chemische Fixierung mit Formaldehydlösungen und Kryokonservierung durch Kühlung von Zellen oder ganzen Gewebestücken unterhalb des Gefrierpunkts.

Rindergehirne wurden unmittelbar nach dem Tod des Tieres von einem italienischen Schlachthaus bezogen und mit verschiedenen Verfahren konserviert. Dann wurden die Proben mit quasi-elastischer Neutronenstreuung (QENS) am hochauflösenden IN5-Spektrometer des Institut Laue-Langevin (ILL) untersucht.

Neutronen sind sehr gut geeignet zur Untersuchung biologischen Materials auf atomarer Größen-skala, denn da sie keine Strahlenschäden verursachen, können sie sehr genau jede zeitliche Änderung in den Proben aufzeichnen.

Bei den Analysen fanden Dr. Francesca Natali und ihre Kollegen eine signifikante Verringerung der Wasserbewegung als Folge der Einbringung von Konservierungslösungen auf Formaldehydbasis, möglicherweise aufgrund der Bildung von Verbindungen zwischen Proteinen. In diesen könnte freies Wasser eingefangen und so seine Beweglichkeit verringert worden sein. Ein solcher Effekt wurde bei Proben unter Kryokonservierung nicht beobachtet.

Neben diesen Befunden zeigten die Untersuchungsergebnisse auch erstmals die Leistungsfähigkeit von Neutronen bei der Modellierung der Zellwasserdiffusion in Gehirngewebe. Dieses neue Verfahren könnte dMRT-Spezialisten dabei unterstützen, die Grenzen heutiger bildgebender Verfahren zu verschieben bis hin zur Verbesserung von Diagnosen und zur Untersuchung von Behandlungsmöglichkeiten bei Gehirnerkrankungen.

In einer separaten Studie untersuchte dasselbe Team, wie die Bewegung und Verteilung von Zell-wasser in Gehirngewebe durch Myelin beeinflusst wird, einem Schutzschichten bildenden elektrischen Isolator, bekannt als Hülle um Gehirnzellen-Axonen. Myelin ist verantwortlich für die Beschleunigung elektrischer Impulse auf ihrem Weg entlang Gewebefasern g, und viele neurodegenerative Autoimmunerkrankungen wie Multiple Sklerose sind die Folge seiner Degradation. Mit dem neuen Verständnis der Auswirkungen von Konservierungsverfahren kann das Team mittels Neutronenstreuung die Untersuchung der Bedingungen auf einer atomaren Größenskala beginnen, die zu diesen Autoimmunerkrankungen führen, sowie ihrer Behandlungsmöglichkeiten.

Zitat:
Dr. Francesca Natali: „Dies ist der erste Hinweis, dass Wasserdiffusion, ein Schlüsselprozess in der Verfolgung und Diagnose von Gehirnerkrankungen, ganz wesentlich von üblichen Konservierungs-verfahren für Gewebeproben beeinflusst wird. Beim Vergleich von MRT-Daten von In-vivo- mit Ex-vivo-Gewebeproben müssen diese Änderungen der dynamischen und strukturellen Eigenschaften berücksichtigt werden. Wir untersuchen am ILL, wie diese Bewegung von Zellwasser mit der Entstehung von Tumoren, Krebs und neurodegenerativen Erkrankungen wie Multiple Sklerose in Ex-vivo-Proben zusammenhängt. Die Befunde sind enorm wichtig, um die Verlässlichkeit unserer Ergebnisse zu verbessern.“

Pressekontakt:
In England: James Romero +44 845 680 1866 – james@proofcommunication.com
In Deutschland: Arno Laxy +49 89 15 92 96 76 – ill@sympra.de

Anmerkungen für Redaktionen
1. Über das Institut Laue-Langevin (ILL) – Das Institut Laue-Langevin (ILL) ist ein internationales Forschungszentrum im französischen Grenoble. Seit den ersten Experimenten im Jahr 1972 ist es führend auf dem Gebiet der Neutronenstreuungsforschung und -technologie. Das ILL betreibt eine der stärksten Neutronenquellen der Welt, von der Neutronenstrahlen zu 40 hochkomplexen Instrumenten geleitet werden, die ständig modernisiert und verbessert werden. Jährlich besuchen 1.200 Wissenschaftler aus mehr als 40 Ländern das ILL, um Forschungsarbeiten auf den Gebieten Physik der kondensierten Materie, (grüne) Chemie, Biologie, Kern- und Teilchenphysik sowie Materialwissenschaft durchzuführen. Deutschland, Frankreich und Großbritannien sind Partner und Hauptgeldgeber des ILL.

Media Contact

Arno Laxy Sympra GmbH idw

Weitere Informationen:

http://www.ill.eu

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer