Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenforschung offenbart Schwächen der Konservierung mit Formaldehyd bei Gehirngewebe

28.03.2013
Die Ergebnisse sind ein erster Abschnitt eines Projektes, das darauf zielt, die Grenzen bestehender bildgebender dMRT-Techniken zu erweitern, um Diagnosen zu verbessern und Behandlungsmöglichkeiten von Gehirnerkrankungen zu untersuchen.

Die erste Analyse biologischer Prozesse in Gehirngewebe mit Neutronen am Institut Laue-Langevin (ILL) ergab, dass die übliche Verwendung von Konservierungsstoffen mit Formaldehyd wesentliche Eigenschaften, wie z.B. Wasserdiffusionsgeschwindigkeiten, verändert anstatt sie zu erhalten.

Die Abbildung von Zellwasser im Hirn ist wesentlich bei postmortalen Analysen verschiedener Gehirnerkrankungen wie Tumoren und Multipler Sklerose in Bezug auf frühere Diagnosen und Behandlungsmöglichkeiten. Diese Ergebnisse legen die Notwendigkeit nahe, bestehende Forschungen auf diesem Gebiet zu überprüfen.

Diese Ergebnisse sind die erste Stufe in der wegweisenden Verwendung von Neutronen durch ein Forscherteam, um die Bewegung von Zellwasser in Gehirngewebe in bisher nicht gekannten Details zu verstehen.

Die Bewegungsanalysen bilden die physikalische Grundlage der Diffusionsmagnet-resonanztomografie (dMRT – englisch dMRI = diffusion magnetic resonance imaging) und der Diagnose verschiedener Gehirnerkrankungen. Diese ersten Ergebnisse zeigen, dass Neutronen die Effekte der biologischen Prozesse auf einer 10.000-mal kleineren Skala als dMRT „sehen“ können. Künftig werden Neutronen am ILL dazu dienen, die Zellwasserdynamik in Ex-vivo-Proben von krankem Gehirngewebe mit bisher unerreichter Auflösung zu analysieren, was Ärzten helfen kann, erste Anzeichen dieser Krankheiten zu entdecken und Behandlungsmöglichkeiten zu prüfen.

Zellwasser ist ein wesentlicher Bestandteil unseres Körpers und sein Anteil kann in Gehirnregionen je nach ihrer spezifischen Zusammensetzung variieren. Wasser spielt eine Schlüsselrolle in der Zellregulierung und seine Verteilung und Bewegung ist ein genauer Indikator der Zellstruktur, da es mit verschiedenen Gewebekomponenten wie z.B. Membranen und Nervenfasern eine Wechselwirkung eingeht.

Die dMRT und andere bildgebende Verfahren nutzen Wasserdiffusion als Kontrastmittel zur Entdeckung und Charakterisierung verschiedener Gehirnerkrankungen (z.B. Ischämiesyndrom, Tumoren und – erst kürzlich – erbliche Prionkrankheiten) im Mikrometerbereich (100-fach kleiner als ein menschliches Haar). Auf dieser Skala kann jedoch der Beitrag der makromolekularen Komponenten nicht getrennt werden, sondern es wird über sie gemittelt.

Weil die erreichbare Auflösung bildgebender Standardverfahren zur Erkennung erster Anzeichen von Gehirnerkrankungen begrenzt ist, verwendete man zunehmend Konservierungsverfahren zur Untersuchung krankhafter Zustände in Ex-vivo-Proben. Jedoch beeinträchtigten Bedenken hinsichtlich des Einflusses dieser Konservierungsprozesse auf die grundlegenden Struktur- und Zusammensetzungseigenschaften der Gewebe das Vertrauen in diese Forschungsrichtung.

Um diese Bedenken auszuräumen, verglich Dr. Francesca Natali vom italienischen CNR (Consiglio Nazionale delle Ricerche) in Zusammenarbeit mit Dr. Yuri Gerelli, Wissenschaftler am Institut Laue-Langevin (ILL), dem weltweit führenden Zentrum für Neutronenforschung, Prof. J. Peters von der französischen Universität J. Fourier in Grenoble (UJF) und Dr. Calogero Stelletta von der Universität Padua (Italien) das Verhalten von Zellwasser in Ex-vivo-Rindergewebe. Es handelte sich dabei um Zellwasser, das mit zwei üblichen Verfahren konserviert wurde, nämlich durch chemische Fixierung mit Formaldehydlösungen und Kryokonservierung durch Kühlung von Zellen oder ganzen Gewebestücken unterhalb des Gefrierpunkts.

Rindergehirne wurden unmittelbar nach dem Tod des Tieres von einem italienischen Schlachthaus bezogen und mit verschiedenen Verfahren konserviert. Dann wurden die Proben mit quasi-elastischer Neutronenstreuung (QENS) am hochauflösenden IN5-Spektrometer des Institut Laue-Langevin (ILL) untersucht.

Neutronen sind sehr gut geeignet zur Untersuchung biologischen Materials auf atomarer Größen-skala, denn da sie keine Strahlenschäden verursachen, können sie sehr genau jede zeitliche Änderung in den Proben aufzeichnen.

Bei den Analysen fanden Dr. Francesca Natali und ihre Kollegen eine signifikante Verringerung der Wasserbewegung als Folge der Einbringung von Konservierungslösungen auf Formaldehydbasis, möglicherweise aufgrund der Bildung von Verbindungen zwischen Proteinen. In diesen könnte freies Wasser eingefangen und so seine Beweglichkeit verringert worden sein. Ein solcher Effekt wurde bei Proben unter Kryokonservierung nicht beobachtet.

Neben diesen Befunden zeigten die Untersuchungsergebnisse auch erstmals die Leistungsfähigkeit von Neutronen bei der Modellierung der Zellwasserdiffusion in Gehirngewebe. Dieses neue Verfahren könnte dMRT-Spezialisten dabei unterstützen, die Grenzen heutiger bildgebender Verfahren zu verschieben bis hin zur Verbesserung von Diagnosen und zur Untersuchung von Behandlungsmöglichkeiten bei Gehirnerkrankungen.

In einer separaten Studie untersuchte dasselbe Team, wie die Bewegung und Verteilung von Zell-wasser in Gehirngewebe durch Myelin beeinflusst wird, einem Schutzschichten bildenden elektrischen Isolator, bekannt als Hülle um Gehirnzellen-Axonen. Myelin ist verantwortlich für die Beschleunigung elektrischer Impulse auf ihrem Weg entlang Gewebefasern g, und viele neurodegenerative Autoimmunerkrankungen wie Multiple Sklerose sind die Folge seiner Degradation. Mit dem neuen Verständnis der Auswirkungen von Konservierungsverfahren kann das Team mittels Neutronenstreuung die Untersuchung der Bedingungen auf einer atomaren Größenskala beginnen, die zu diesen Autoimmunerkrankungen führen, sowie ihrer Behandlungsmöglichkeiten.

Zitat:
Dr. Francesca Natali: „Dies ist der erste Hinweis, dass Wasserdiffusion, ein Schlüsselprozess in der Verfolgung und Diagnose von Gehirnerkrankungen, ganz wesentlich von üblichen Konservierungs-verfahren für Gewebeproben beeinflusst wird. Beim Vergleich von MRT-Daten von In-vivo- mit Ex-vivo-Gewebeproben müssen diese Änderungen der dynamischen und strukturellen Eigenschaften berücksichtigt werden. Wir untersuchen am ILL, wie diese Bewegung von Zellwasser mit der Entstehung von Tumoren, Krebs und neurodegenerativen Erkrankungen wie Multiple Sklerose in Ex-vivo-Proben zusammenhängt. Die Befunde sind enorm wichtig, um die Verlässlichkeit unserer Ergebnisse zu verbessern.“

Pressekontakt:
In England: James Romero +44 845 680 1866 – james@proofcommunication.com
In Deutschland: Arno Laxy +49 89 15 92 96 76 – ill@sympra.de

Anmerkungen für Redaktionen
1. Über das Institut Laue-Langevin (ILL) – Das Institut Laue-Langevin (ILL) ist ein internationales Forschungszentrum im französischen Grenoble. Seit den ersten Experimenten im Jahr 1972 ist es führend auf dem Gebiet der Neutronenstreuungsforschung und -technologie. Das ILL betreibt eine der stärksten Neutronenquellen der Welt, von der Neutronenstrahlen zu 40 hochkomplexen Instrumenten geleitet werden, die ständig modernisiert und verbessert werden. Jährlich besuchen 1.200 Wissenschaftler aus mehr als 40 Ländern das ILL, um Forschungsarbeiten auf den Gebieten Physik der kondensierten Materie, (grüne) Chemie, Biologie, Kern- und Teilchenphysik sowie Materialwissenschaft durchzuführen. Deutschland, Frankreich und Großbritannien sind Partner und Hauptgeldgeber des ILL.

Arno Laxy Sympra GmbH | idw
Weitere Informationen:
http://www.ill.eu

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise