Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nanothermometer zur kontaktlosen Temperaturmessung an Krebstumoren

14.10.2008
Aktuelle Forschungsergebnisse zur Anwendung von Nanoteilchen in der Biomedizin zeigen, dass gefüllte und nur einige Nanometer große Kohlenstoffröhrchen (CNT) für kontaktlose Temperaturmessungen an Krebstumoren verwendet werden können. Darüber berichten jetzt Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung IFW Dresden e.V. in der Fachzeitschrift "Nanomedicine".

Nanoteilchen werden bereits im Rahmen von Pilotstudien an ersten Patienten zur hyperthermischen Behandlung in der Krebstherapie eingesetzt. Mit Anwendung von multifunktionellen gefüllten Kohlenstoffnanoröhren (Carbon nanotubes=CNTs) beschäftigen sich im IFW mehrere von der Deutschen Forschungsgemeinschaft (DFG) und von der EU geförderte Projekte - so z.B. das europäische Forschungsprojekt CARBIO, das seit Ende 2006 am IFW Dresden koordiniert wird.

Im Rahmen dieses Projektes experimentieren Wissenschaftler am IFW mit magnetischen Füllungen in CNTs, die durch induktive Aufheizung im Körper zukünftig ganz gezielt Tumorgewebe zerstören sollen. Die CNTs dienen dabei als Container für unterschiedliche Dinge: sie können Sensoren, Magnete und Medikamente über die Blutbahn transportieren, ohne dass ihr Inhalt auf dem Weg zum Zielort in unerwünschten Kontakt mit Gewebe kommt.

Da eine Aufheizung (= Hyperthermie) von Tumorgewebe im menschlichen Körper fortlaufend und möglichst genau kontrolliert werden muss, ist eine Temperaturüberwachung mit einem Thermometer auf Zellebene erforderlich. Aktuelle Ergebnisse im Rahmen von CARBIO haben jetzt ergeben, dass mit Kupferiodid (CuI) gefüllte CNTs als Thermometer dienen können. Dieses Material, wie auch andere Alkali- und Kupfer-Halogenide, zeigt in Kernspinresonanz-Messungen diverse temperaturabhängige Parameter. So ist zum Beispiel die Relaxationszeit, d.h. die Zeit, die die Magnetisierung eines angeregten Teilchens benötigt um wieder zum Ausgangszustand zu kommen, ein solcher temperaturabhängiger Parameter.

Misst man diesen Parameter mit Hilfe der Magnetresonanz, kann auf die genaue Temperatur in der Umgebung des Kupferjodids geschlossen werden. Diese kontaktlose Temperaturmessung von außen bietet im Gegensatz zu einer herkömmlichen Temperaturkontrolle bei hyperthermischen Krebsbehandlungen einen einzigartigen Vorteil: der Aufwand und das Risiko eines operativen Eingriffs kann mit dem Nanothermometer zukünftig vermieden werden.

Zur Herstellung des Nanothermometers füllten die Wissenschaftler am IFW Kupferjodid in CNTs. Dazu wurden mehrwandige CNTs mit einem Durchmesser von 5 bis 20 nm und einer Länge von 10 bis 30 µm hergestellt. Mehrwandige CNTs können in den äußeren Lagen noch mit funktionellen Gruppen ausgestattet werden, so dass sie vom Körper besser aufgenommen werden. Nach einer thermischen Behandlung bei 450 °C sowie Ultraschallbehandlungen mit Salzsäure und Salpetersäure öffnen sich die Nanoröhrchen. Die Röhrchen wurden anschließend mit Kupferjodid gefüllt, indem das Material in einer Silika-Ampulle auf 600 °C erhitzt wurde. Über Kapillarkräfte wird so das Kupferjodid in die CNTs regelrecht "eingesogen".

Messungen der Nuklearen Magnetischen Resonanz (NMR) bei einem äußeren Magnetfeld von 7 Tesla zeigten den Forschern, dass für die Relaxationszeit und die Resonanzfrequenz eine deutliche Temperaturabhängigkeit im Bereich von 5 bis 320 Kelvin (entsprechend max. 47 ° Celsius) besteht. Die beste Auflösung ergab sich für die Relaxationszeit mit einer Messgenauigkeit von 2 Kelvin. Damit erfassen die Kupferjodid gefüllten CNTs den Temperaturbereich von hyperthermischen Behandlungen in der Krebstherapie, die gängigerweise bei knapp mehr als 42 ° Celsius durchgeführt werden. Eine Verwendung dieser CNTs als kontaktlose Nanothermometer ist somit grundsätzlich möglich, wobei jedoch die Messgenauigkeit noch erhöht werden muss. Zurzeit untersuchen Wissenschaftler am IFW deshalb weitere mögliche Füllmaterialien für CNTs.

Kontakt:

Dr. Anja Wolter (wissenschaftlich)
Leibniz-Institut für Festkörper und Werkstoffforschung IFW Dresden e.V.
Institut für Festkörperforschung IFF
Tel. 0351-4659-619
a.wolter@ifw-dresden.de
Dr. Anke Dürkoop (CARBIO-Projektmanagement)
Leibniz-Institut für Festkörper und Werkstoffforschung IFW Dresden e.V
Institut für Festkörperforschung IFF
Tel. 0351-4659-777
a.duerkoop@ifw-dresden.de
Publikation:
Vyalikh et al. 2008, Nanomedicine 3 (2008), p. 321 - 327: "A carbon-wrapped nanoscaled thermometer for temperature control in biological environments"

Dr. Carola Langer | idw
Weitere Informationen:
http://www.carbio.eu
http://www.futuremedicine.com/doi/abs/10.2217/17435889.3.3.321
http://www.ifw-dresden.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie