Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material zur Herstellung künstlicher Blutgefäße

28.04.2015

TU Wien und MedUni Wien entwickelten künstliche Blutgefäße, die vom Körper abgebaut und mit eigenem Gewebe ersetzt werden.

Verschlossene Blutgefäße können rasch gefährlich werden. Oft ist es notwendig, ein Blutgefäß zu ersetzen – entweder durch ein körpereigenes Blutgefäß oder aber durch künstlich hergestellte Gefäßprothesen.


Synthese der biokompatiblen und bioabbaubaren Polymere im Labor an der TU Wien

TU Wien

Die TU Wien und die Medizinische Universität Wien entwickelten nun gemeinsam künstliche Blutgefäße aus einem speziellen Elastomer-Material, das ausgezeichnete mechanische Eigenschaften hat. Diese künstlichen Blutgefäße werden im Laufe der Zeit durch körpereigenes Material ersetzt. Am Ende dieses Umbauprozesses ist wieder ein natürliches, vollständig funktionsfähiges Blutgefäß entstanden. Bei Ratten hat sich die Methode bereits bewährt.

Überleben durch künstliche Blutgefäße

Zu den häufigsten Todesursachen in Industrienationen gehören arteriosklerotische Gefäßerkrankungen. Eine Bypass-Operation ist dann oft die einzige Lösung. Normalerweise entnimmt man dafür Blutgefäße des Patienten und setzt sie statt des geschädigten Blutgefäßes ein. Dank eines gemeinsamen Projekts von TU Wien und Medizinischer Universität Wien sollen in Zukunft auch künstlich hergestellte Gefäße vermehrt zum Einsatz kommen.

Entscheidend dabei ist, ein passendes Material zu finden. Die künstlichen Materialien, die man bisher verwendete, vertragen sich nicht optimal mit dem körpereigenen Gewebe. Es kann dann leicht zu einem Verschluss des Blutgefäßes kommen, besonders wenn der Durchmesser gering ist.

An der TU Wien wurden daher neue Polymere entwickelt. „Es handelt sich um sogenannte thermoplastische Polyurethane“, erklärt Prof. Robert Liska vom Institut für angewandte Synthesechemie der TU Wien. „Durch die Auswahl ganz bestimmter molekularer Bausteine gelang es uns, ein Polymer mit den gewünschten Eigenschaften zu synthetisieren.“

Ein dünner Polymer-Faden, zur Röhre gesponnen

Zur Herstellung der Gefäßprothesen werden Polymerlösungen in einem elektrischen Feld zu sehr feinen Fäden gesponnen und auf eine Spule aufgewickelt. „Die Wand dieser künstlichen Blutgefäße ist natürlichen Blutgefäßen sehr ähnlich“, sagt Prof. Heinz Schima von der Medizinischen Universität Wien. Das Polymer-Gewebe ist leicht porös, daher sickert zunächst etwas Blut hindurch und reichert die Wand mit Wachstumsfaktoren an. Das begünstigt das Einwandern körpereigener Zellen. Die Interaktion zwischen Material und Blut wurde an der TU Wien von Prof. Martina Marchetti-Deschmann mit Hilfe von ortsaufgelöster Massenspektrometrie untersucht.

Im Rattenexperiment war die neue Methode bereits sehr erfolgreich. „Sechs Monate nach dem Einsetzen der Gefäßprothesen wurden die Blutgefäße der Ratten untersucht“, sagt Dr. Helga Bergmeister von der MedUni Wien. „Es waren weder Aneurysmen noch Thrombosen oder Entzündungen festzustellen. Körpereigene Zellen hatten die Gefäßprothese besiedelt und das künstliche Konstrukt zu körpereigenem Gewebe umgewandelt.“ Das Nachwachsen körpereigenen Gewebes verläuft sogar schneller als man erwartet hatte, daher soll nun die Abbaudauer der Kunststoffröhren noch verringert werden. Daher wird derzeit noch an weiteren Anpassungen des Materials gearbeitet.

Vom Austria Wirtschaftsservice (AWS) wurde das Projekt kürzlich mit einer PRIZE Prototypenförderung ausgezeichnet. Bis die künstlichen Blutgefäße bei Menschen eingesetzt werden können, sind noch weitere präklinische Versuche notwendig. Doch aufgrund der bisherigen Ergebnisse ist das Forscherteam sehr zuversichtlich, dass sich die neue Methode in einigen Jahren auch beim Einsatz im Menschen bewähren wird.

Rückfragehinweise:

Prof. Robert Liska
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163614
robert.liska@tuwien.ac.at

Prof. Heinrich Schima
Zentrum für Medizinische Physik und Biomed. Technik,
MedUni Wien, Währinger Gürtel 18, A-1090 Wien
T: +43-1-40400-39820
heinrich.schima@meduniwien.ac.at

Prof. Helga Bergmeister
Department für Biomedizinische Forschung
MedUni Wien, Währinger Gürtel 18, A-1090 Wien
T: +43-1-40400-52190
helga.bergmeister@meduniwien.ac.at

Mag. Johannes Angerer
Medizinische Universität Wien
Leiter Kommunikation und Öffentlichkeitsarbeit
Spitalgasse 23, 1090 Wien
T: +43-1-40160-11501
pr@meduniwien.ac.at

Weitere Informationen:

http://dx.doi.org/10.1016/j.actbio.2014.09.003 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Methode der Eisenverabreichung
26.04.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung
26.04.2017 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie