Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Therapien gegen Krebs

13.10.2009
Mit wohl dosierten Eingriffen in den Informationsfluss von Tumorzellen wollen Würzburger Wissenschaftler Krebs bekämpfen. Dazu müssen sie jedoch zunächst deren Signalnetzwerk möglichst exakt kennen. Eine neue klinische Forschergruppe arbeitet in den kommenden Jahren daran.

Die Vorstellung, dass ein kleiner Defekt im Erbmaterial ausreicht, um eine normale Körperzelle in eine Tumorzelle zu verwandeln, ist zwar weit verbreitet - stimmt aber nicht unbedingt mit der Realität überein. "Wir verfolgen die Hypothese, dass Tumoren schrittweise entstehen, wenn mehrere Ereignisse geschehen und sich in ihrer Wirkung addieren", erklärt Professor Ralf Bargou.

Acht Millionen Euro für den Kampf gegen Krebs

Bargou ist wissenschaftlicher Leiter der neuen klinischen Forschergruppe an der Universität Würzburg, die vor Kurzem von der Deutschen Forschungsgemeinschaft eingerichtet wurde. Die Gruppe will an einer bestimmten Art von Knochenmarkkrebs, dem Multiplen Myelom, neue Therapiemöglichkeiten entwickeln, die im Erfolgsfall auch bei anderen Krebsarten zum Einsatz kommen könnten. Sprecher der Gruppe ist der Leiter der Medizinischen Klinik II, Professor Hermann Einsele. Acht Millionen Euro stehen dafür in den kommenden sechs Jahren zur Verfügung.

Wie Krebs entsteht

Die Mitglieder der Forschergruppe sind davon überzeugt, dass nicht eine Veränderung im Erbgut alleine dafür verantwortlich ist, wenn sich Zellen unkontrolliert teilen und vermehren. Sie haben die Komplexität eines großen Systems im Auge. "Zellen tauschen Informationen auf den unterschiedlichsten Wegen untereinander aus", sagt Bargou. Geht es um Teilung und Wachstum, würden etliche solcher Signalwege eine Rolle spielen, die sich auch noch gegenseitig beeinflussen. Auf diese Weise entsteht ein Signalnetzwerk, das erst dann aus dem Ruder läuft, wenn die Störungen an zentralen Stellen auftauchen oder wenn mehrere Schäden sich in ihrer Wirkung verstärken.

Blockaden an zentralen Stellen

"Unser Ziel ist es, dieses Signalnetzwerk mit allen seinen Komponenten so gut wie möglich zu verstehen und dann die Stellen zu identifizieren, die sich für einen effizienten therapeutischen Ansatz anbieten", sagt Bargou. Ist solch ein Ansatzpunkt erst gefunden, können die Mediziner im Idealfall dort Substanzen - so genannte Inhibitoren - andocken lassen, die den Informationsfluss im Netzwerk blockieren. "Wir hoffen, dass auf diese Weise das Signalnetzwerk zusammenbricht und das Wachstum des Tumors gestoppt wird", so Bargou.

Erste Studien am Krankenbett

Im Fall des Multiplen Myeloms haben die Würzburger Wissenschaftler bereits solch eine Komponente entdeckt, die eine wichtige Rolle spielt, wenn es darum geht, das Signalnetzwerk aufrecht zu erhalten. Auch der Stoff, der diese Komponente blockieren kann, ist bekannt - und seit Kurzem an Patienten in Erprobung. Dabei zeigt sich allerdings auch, wie komplex das Geschehen ist: "Wir mussten feststellen, dass die alleinige Blockade dieser Komponente nicht ausreicht, um den Tumor zu stoppen", sagt Bargou. Deshalb würden jetzt weitere, zusätzliche Inhibitoren gesucht.

Auf das Multiple Myelom konzentriert sich die Forschergruppe, weil diese Krankheit schon seit Jahren ein ausgewiesener klinischer Forschungsschwerpunkt des Universitätsklinikums Würzburg ist. "Auf diesem Gebiet haben wir die meiste wissenschaftliche und klinische Expertise", so Bargou.

Rasche Umsetzung in die Klinik

In den kommenden Monaten werden die Wissenschaftler das Signalnetzwerk der Tumoren zunächst an Zellkulturmodellen analysieren, bevor sie im nächsten Schritt auch genetisch veränderte Tiere in ihre Versuche mit einbeziehen. Doch dabei soll es nicht bleiben: Durch die enge Anbindung der Forschungsgruppe an die so genannte Early Clinical Trial Unit sollen auch Patienten möglichst rasch von den Erkenntnissen der Wissenschaftler profitieren.

In der Early Clinical Trial Unit werden Tumorpatienten, für die es mit herkömmlichen Verfahren keine Heilungschancen mehr gibt, ausschließlich mit neuen Therapien behandelt. Patienten bekommen dort also frühen Zugang zu möglichen neuen Behandlungsverfahren. "Wir verfügen damit über die Voraussetzungen, die Erkenntnisse aus der Grundlagenforschung im Rahmen klinischer Studien rasch in die klinische Praxis umzusetzen", sagt Ralf Bargou, der die Early Clinical Trial Unit an der Medizinischen Klinik II leitet.

Interdisziplinäre Zusammenarbeit

Damit dieses Ziel tatsächlich erreicht werden kann, arbeiten in der klinischen Forschergruppe Wissenschaftler verschiedener Fachrichtungen zusammen. Daran beteiligt sind neben der Medizinischen Klinik II das Institut für Pharmazie und Lebensmittelchemie, das Institut für Organische Chemie, das Institut für Virologie und Immunbiologie, das Institut für Pathologie und die Biochemie der Universität Würzburg. Des Weiteren besteht eine enge Kooperation mit Wissenschaftlern und Ärzten der Klinik für Innere Medizin II der Universität Ulm.

Kontakt: Prof. Dr. Ralf C. Bargou, T (0931) 201-70280, bargou_r@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise