Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Therapien gegen Krebs

13.10.2009
Mit wohl dosierten Eingriffen in den Informationsfluss von Tumorzellen wollen Würzburger Wissenschaftler Krebs bekämpfen. Dazu müssen sie jedoch zunächst deren Signalnetzwerk möglichst exakt kennen. Eine neue klinische Forschergruppe arbeitet in den kommenden Jahren daran.

Die Vorstellung, dass ein kleiner Defekt im Erbmaterial ausreicht, um eine normale Körperzelle in eine Tumorzelle zu verwandeln, ist zwar weit verbreitet - stimmt aber nicht unbedingt mit der Realität überein. "Wir verfolgen die Hypothese, dass Tumoren schrittweise entstehen, wenn mehrere Ereignisse geschehen und sich in ihrer Wirkung addieren", erklärt Professor Ralf Bargou.

Acht Millionen Euro für den Kampf gegen Krebs

Bargou ist wissenschaftlicher Leiter der neuen klinischen Forschergruppe an der Universität Würzburg, die vor Kurzem von der Deutschen Forschungsgemeinschaft eingerichtet wurde. Die Gruppe will an einer bestimmten Art von Knochenmarkkrebs, dem Multiplen Myelom, neue Therapiemöglichkeiten entwickeln, die im Erfolgsfall auch bei anderen Krebsarten zum Einsatz kommen könnten. Sprecher der Gruppe ist der Leiter der Medizinischen Klinik II, Professor Hermann Einsele. Acht Millionen Euro stehen dafür in den kommenden sechs Jahren zur Verfügung.

Wie Krebs entsteht

Die Mitglieder der Forschergruppe sind davon überzeugt, dass nicht eine Veränderung im Erbgut alleine dafür verantwortlich ist, wenn sich Zellen unkontrolliert teilen und vermehren. Sie haben die Komplexität eines großen Systems im Auge. "Zellen tauschen Informationen auf den unterschiedlichsten Wegen untereinander aus", sagt Bargou. Geht es um Teilung und Wachstum, würden etliche solcher Signalwege eine Rolle spielen, die sich auch noch gegenseitig beeinflussen. Auf diese Weise entsteht ein Signalnetzwerk, das erst dann aus dem Ruder läuft, wenn die Störungen an zentralen Stellen auftauchen oder wenn mehrere Schäden sich in ihrer Wirkung verstärken.

Blockaden an zentralen Stellen

"Unser Ziel ist es, dieses Signalnetzwerk mit allen seinen Komponenten so gut wie möglich zu verstehen und dann die Stellen zu identifizieren, die sich für einen effizienten therapeutischen Ansatz anbieten", sagt Bargou. Ist solch ein Ansatzpunkt erst gefunden, können die Mediziner im Idealfall dort Substanzen - so genannte Inhibitoren - andocken lassen, die den Informationsfluss im Netzwerk blockieren. "Wir hoffen, dass auf diese Weise das Signalnetzwerk zusammenbricht und das Wachstum des Tumors gestoppt wird", so Bargou.

Erste Studien am Krankenbett

Im Fall des Multiplen Myeloms haben die Würzburger Wissenschaftler bereits solch eine Komponente entdeckt, die eine wichtige Rolle spielt, wenn es darum geht, das Signalnetzwerk aufrecht zu erhalten. Auch der Stoff, der diese Komponente blockieren kann, ist bekannt - und seit Kurzem an Patienten in Erprobung. Dabei zeigt sich allerdings auch, wie komplex das Geschehen ist: "Wir mussten feststellen, dass die alleinige Blockade dieser Komponente nicht ausreicht, um den Tumor zu stoppen", sagt Bargou. Deshalb würden jetzt weitere, zusätzliche Inhibitoren gesucht.

Auf das Multiple Myelom konzentriert sich die Forschergruppe, weil diese Krankheit schon seit Jahren ein ausgewiesener klinischer Forschungsschwerpunkt des Universitätsklinikums Würzburg ist. "Auf diesem Gebiet haben wir die meiste wissenschaftliche und klinische Expertise", so Bargou.

Rasche Umsetzung in die Klinik

In den kommenden Monaten werden die Wissenschaftler das Signalnetzwerk der Tumoren zunächst an Zellkulturmodellen analysieren, bevor sie im nächsten Schritt auch genetisch veränderte Tiere in ihre Versuche mit einbeziehen. Doch dabei soll es nicht bleiben: Durch die enge Anbindung der Forschungsgruppe an die so genannte Early Clinical Trial Unit sollen auch Patienten möglichst rasch von den Erkenntnissen der Wissenschaftler profitieren.

In der Early Clinical Trial Unit werden Tumorpatienten, für die es mit herkömmlichen Verfahren keine Heilungschancen mehr gibt, ausschließlich mit neuen Therapien behandelt. Patienten bekommen dort also frühen Zugang zu möglichen neuen Behandlungsverfahren. "Wir verfügen damit über die Voraussetzungen, die Erkenntnisse aus der Grundlagenforschung im Rahmen klinischer Studien rasch in die klinische Praxis umzusetzen", sagt Ralf Bargou, der die Early Clinical Trial Unit an der Medizinischen Klinik II leitet.

Interdisziplinäre Zusammenarbeit

Damit dieses Ziel tatsächlich erreicht werden kann, arbeiten in der klinischen Forschergruppe Wissenschaftler verschiedener Fachrichtungen zusammen. Daran beteiligt sind neben der Medizinischen Klinik II das Institut für Pharmazie und Lebensmittelchemie, das Institut für Organische Chemie, das Institut für Virologie und Immunbiologie, das Institut für Pathologie und die Biochemie der Universität Würzburg. Des Weiteren besteht eine enge Kooperation mit Wissenschaftlern und Ärzten der Klinik für Innere Medizin II der Universität Ulm.

Kontakt: Prof. Dr. Ralf C. Bargou, T (0931) 201-70280, bargou_r@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungsnachrichten

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie