Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenkrebs bei Kindern gezielt behandeln

30.10.2009
Das Neuroblastom ist ein bösartiger Tumor des Kindesalters, der im fortgeschrittenen Stadium trotz intensiver Therapie oft zum Tode führt.

Neben diesen aggressiven Formen gibt es aber auch Neuroblastome, die kaum behandelt werden müssen und sich sogar spontan zurückbilden. In ersten Untersuchungen haben wir gezeigt, dass Neuroblastome, die erhöhte Mengen eines Enzyms aus der Familie der Histondeacetylasen (HDAC) bilden, mit aggressivem Tumorstadium und einer schlechten Prognose einhergehen.

Dagegen haben Neuroblastome, die nur geringe Mengen dieses Enzyms bilden, eine günstigere Prognose. Somit scheint dieses Mitglied der HDAC-Familie, HDAC8, für das aggressive Tumorwachstum mit verantwortlich zu sein. Wir planen daher, gezielte Hemmstoffe gegen dieses Enzym zu verwenden und zu erproben, ob diese Substanzen als Medikamente gegen das Neuroblastom geeignet sind.

Mit etwa 7-10 Prozent aller Krebserkrankungen bei Kindern stellt das Neuroblastom den häufigsten soliden Tumor des Säugling- und Kleinkindalters dar. Seinen Ursprung hat das Neuroblastom in den Zellen des Nervensystems. Die Erkrankung schreitet manchmal nur sehr langsam fort oder bildet sich in manchen Fällen sogar spontan zurück. In anderen Fällen dagegen besteht für die Patienten trotz maximaler Therapie nur eine geringe Überlebenschance. Somit zeichnet sich das Neuroblastom durch eine große klinische Heterogenität aus, die nach einer angepassten Therapie verlangt. Während bei dem einen Patienten (Stadium 4S) eine reine Beobachtung der Erkrankung ausreichen kann, da sich die Tumoren dieses Stadiums in der Regel spontan zurückbilden oder die Krebszellen sich zu gutartigen Zellen differenzieren, benötigen Hochrisikopatienten (Stadium 4) eine maximale Therapie, d.h. Operation, Bestrahlung und Hochdosischemotherapie. Um zu erkennen, welche Therapie im Einzelfall angemessen ist, ist es daher wichtig, die exakten molekularen Signalwege, die z.B. Stadium 4 von Stadium 4S unterscheiden, zu verstehen. Das Ziel unserer Forschung ist es, gezielt jene Proteine und Signalwege der Krebszellen zu beeinflussen, die für die bösartige Entartung und das Voranschreiten verantwortlich sind, um eine wirksamere Therapie mit geringeren Nebenwirkungen zu etablieren.

Die Entstehung von Krebs wird oft dadurch begünstigt, dass Tumorsuppressorgene ("Krebsbremsen") durch so genannte epigenetische Mechanismen stillgelegt werden. Zu diesen epigenetischen Regulationsmechanismen der Genaktivität zählt die Deacetylierung von Histonen, Eiweißen im Zellkern, die das Erbgut verpacken. Die Entfernung von Acetylgruppen - die Deacetylierung - an den Histonproteinen bewirkt, dass die betroffenen Erbgutbereiche nicht mehr abgelesen werden können. Bestimmte Substanzen, die Histondeacetylase-Inhibitoren (HDAC-Inhibitoren) unterbinden diese Form der epigenetischen Genstilllegung. Durch breit wirkende HDAC-Inhibitoren konnten wir in der Kulturschale bereits bösartige Neuroblastomzellen wieder "zurückprogrammieren", auch die stillgelegten Tumorsuppressorgene wurden wieder aktiviert.

Aufgrund dieser Ergebnisse wird in der Krebsmedizin heute geprüft, ob sich Eingriffe in die epigenetische Regulation für neue Behandlungsstrategien eignen. Als Wirkstoffe kämen neben den HDAC-Inhibitoren auch Substanzen in Frage, die die DNA-Methylierung, den zweiten wichtigen epigenetischen Regulationsmechanismus, blockieren. Die ersten Hemmstoffe der HDAC-Enzyme (z.B. Vorinostat, MS-275 und Valproinsäure) werden derzeit bereits in klinischen Phase I und II Studien getestet. Vorinostat ist bereits für die Behandlung des kutanen T-Zelllymphoms bei Erwachsenen zugelassen.

Die Familie der HDACs besteht aus 18 Enzymen, die in vier Klassen unterteilt werden. Da sich die einzelnen Enzyme in ihrer Struktur recht ähnlich sind, wirken die meisten HDAC-Inhibitoren jedoch nicht spezifisch gegen eines der Enzyme, sondern unselektiv meist sogar gegen mehrere Klassen der HDAC-Familie. Erste Phase I Studien an erwachsenen Krebspatienten zeigen dementsprechend ein relativ breites Spektrum an Nebenwirkungen. Daher ist es wichtig, diejenigen HDAC-Enzyme zu identifizieren und möglicherweise gezielt zu hemmen, die tatsächlich für die Krebsentstehung verantwortlich sind. Beim Neuroblastom entdeckten wir, dass das Enzym Histondeacetylase 8 (HDAC8) für die Tumorenstehung entscheidend ist und haben damit erstmalig die molekularen Grundlagen für die Entwicklung einer zielgerichteten epigenetischen Therapie dieser Erkrankung gelegt.

Wir konnten vor kurzem nachweisen, dass Tumoren des Stadiums 4 erhöhte Mengen an HDAC8 aufweisen. Stadium 4-Tumoren zählen zu den Hochrisikotumoren, bei denen trotz maximaler Therapie nur geringe Überlebenschancen bestehen. Stadium 4S-Tumoren bilden sich dagegen oft spontan zurück und sind mit einer guten Prognose assoziiert. 4S-Neuroblastome besitzen deutlich weniger HDAC8. Dies entdeckten wir in Gewebeproben von 251 Neuroblastomen der deutschen Neuroblastom-Studie. Zusätzlich fanden wir heraus, dass die HDAC8-Menge direkt mit der Überlebenswahrscheinlichkeit korreliert. Darüber hinaus zeigten wir, dass die gezielte Verminderung der HDAC8-Bildung in Neuroblastom-Zelllinien das Zellwachstum hemmt und bewirkt, dass die Krebszellen anfangen sich zu normalen Nervenzellen zurückbilden.

Um diese Ergebnisse in einen neuen Therapieansatz umzusetzen, benötigen wir allerdings noch einen Hemmstoff, der gezielt gegen HDAC8 gerichtet ist. Dazu untersuchten wir gemeinsam mit amerikanischen Wissenschaftlern und einer Biotech-Firma neue, selektive HDAC8-Inhibitoren. Dabei haben wir entdeckt, dass diese Substanzen das Wachstum von Neuroblastomzellen aufhalten.

Derzeit untersuchen wir, ob sich HDAC8 als Angriffsmolekül für eine zielgerichtete Therapie des Neuroblastoms eignet und ob das Enzym an dem bisher noch unverstandenen Phänomen der spontanen Rückbildung beteiligt ist. Zudem überprüfen wir die Antitumorwirkung von selektiven HDAC8-Inhibitoren an Mäusen, denen Neuroblastomzellen transplantiert wurden. Das nächste große Ziel ist, die HDAC8-Bildung in Mäusen gezielt zu hemmen und an diesen Tieren zu überprüfen, ob es zur spontanen Rückbildung von Neuroblastomen kommt.

Kontakt:
Dr. phil.nat. Ina Oehme/Prof. Dr. Olaf Witt, DKFZ Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg / E-Mail: i.oheme@dkfz.de

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 100.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten