Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Nasenring gepackt

18.03.2013
Zellen mit Türstehern: Die Abwehr des Körpers gegen Viren beginnt früher als gedacht, nämlich unmittelbar, nachdem die Erreger in die Zelle eingedrungen sind. Das hat ein internationales Forscherteam unter Marburger Federführung herausgefunden. Die Wissenschaftler konnten sichtbar machen, an welcher Stelle das angeborene Immunsystem den Fremdkörper angreift.

Um RNA-Viren wie Grippe- oder AIDS-Erreger abzuwehren, muss der Eindringling rasch erkannt werden. Daran sind so genannte Helicasen beteiligt, die dafür zuständig sind, verflochtene Stränge der Erbsubstanz RNA zu entwinden. Eine dieser Helicasen ist RIG-I. „Unserer Studie sollte klären, ob RIG-I die RNA der eindringenden Viren erkennt“, schreiben die Wissenschaftler um den Virologen Professor Dr. Friedemann Weber von der Philipps-Universität.


Auf frischer Tat ertappt: Sobald ein Virus in die Zelle eindringt (rechts), binden RIG-I-Helicasen an die ringförmige Viren-RNA (1), ändern ihre Gestalt (2), lagern sich zu mehreren an (3) und setzen die antivirale Abwehr in Gang (4).
(Schema: Autoren/ Cell Host & Microbe)

Sobald Helicasen an das Erbmaterial eindringender Viren binden, ändern sie ihre Gestalt, lagern sich zu mehreren zusammen und setzen die Abwehrmechanismen der Zelle in Gang. Bislang war jedoch weitgehend unbekannt, welcher konkrete Teil des Virus eine Helicase stimuliert.

Um das herauszufinden, machten die Wissenschaftler Gebrauch von einer Vielzahl natürlich vorkommender Virenstämme, die unterschiedliche Eigenschaften haben. So konnten die Forscher jeweils genau einen Aspekt der Immunabwehr isoliert betrachten: den Zeitpunkt des ersten Angriffs, das dafür verantwortliche Protein, die Zielstruktur auf dem Virus.

... mehr zu:
»DFG »Helicasen »Nasenring »RNA »Virologe »Virus »enzyme »microbe

Die Untersuchungen ergaben folgendes Bild: Sobald ein Virus in die Zelle eingedrungen ist, setzt sich das RIG-I-Protein an eine bestimmte Stelle von dessen RNA, nämlich genau dort, wo diese zu einer Art Schleife gewunden ist. „RIG-I packt das Virus wie einen Stier am Nasenring“, erläutert Studienleiter Weber.

Die RNA der eindringenden Viren ist zwar eigentlich mit dem Enzym Polymerase bedeckt und dadurch geschützt; aber ab und zu macht das Enzym die RNA zugänglich, zum Beispiel, damit die Erbinformation kopiert werden kann. „Da RIG-I überall in der Zellgrundsubstanz vorhanden ist, scheint es die kurzzeitig entblößten Stellen dann rasch zu besetzen“, vermuten die Wissenschaftler.

„Unsere Befunde zeigen: Die Abwehr gegen Viren beginnt schon in dem Moment, in dem ein Virus in die Zelle eindringt“, schreiben die Forscher, „also zum frühestmöglichen Zeitpunkt einer Infektion.“

Friedemann Weber ist Mitglied im Sonderforschungsbereich 593 zum Thema "Mechanisms of cellular compartmentalisation and the relevance for disease", den die „Deutsche Forschungsgemeinschaft“ (DFG) an der Philipps-Universität eingerichtet hat. Der Marburger Hochschullehrer zählt einer aktuellen Rangliste der Zeitschrift „Laborjournal“ zufolge zu den zwanzig am meisten zitierten Virologen im deutschsprachigen Raum.

Neben dem Institut für Virologie und der Abteilung für Zellbiologie der Philipps-Universität beteiligten sich Wissenschaftler der Universität Freiburg, der Charité – Universitätsmedizin Berlin sowie der Mount Sinai School of Medicine in New York an der Studie, die in der aktuellen Ausgabe der Fachzeitschrift „Cell Host & Microbe“ erschienen ist.

Die Arbeit der Wissenschaftler wurde unter anderem durch die DFG, die Leibniz-Graduiertenschule „EIDIS“ sowie durch das Universitätsklinikum Gießen und Marburg finanziell gefördert.

Originalveröffentlichung: Michaela Weber & al.: Incoming RNA virus nucleocapsids containing a 5’-triphosphorylated genome activate RIG-I and anti-viral signaling, Cell Host & Microbe, 13 (3)/2013, pp. 336-346, DOI:10.1016/j.chom.2013.01.012

Weitere Informationen:
Ansprechpartner: Professor Dr. Friedemann Weber,
Institut für Virologie
Tel.: 06421 28-64525
E- Mail: friedemann.weber@staff.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: DFG Helicasen Nasenring RNA Virologe Virus enzyme microbe

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops