Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoteilchen gegen den Schlaganfall

20.03.2012
Im Kampf gegen die Folgen eines Schlaganfalls gehen Wissenschaftler neue Wege. Winzige Moleküle sollen die Therapie spürbar verbessern.

Der Neurologe Christoph Kleinschnitz ist in zwei neuen Forschungsprojekten daran beteiligt.

Nach einem Schlaganfall ist schnelle Hilfe gefordert: Innerhalb der ersten vier Stunden sollte die Therapie beginnen, um die Folgeschäden für die Betroffenen möglichst gering zu halten. Mit dem Auflösen des Blutgerinnsels ist es allerdings nicht getan. Denn auch danach laufen im Gehirn Prozesse noch über Tage weiter, die die Schäden vergrößern. Neue Medikamente, die an dieser Stelle ansetzen, sind daher dringend gesucht. An der Neurologischen Klinik der Universität Würzburg arbeitet Professor Christoph Kleinschnitz in zwei neuen Forschungsprojekten daran.

„Die Ergebnisse aktueller Schlaganfallforschung in neue Medikamente umzusetzen, hat bisher nicht funktioniert“, sagt Christoph Kleinschnitz. Trotz intensiver Forschungsanstrengungen mit über 100 Therapiestudien sei bisher nur ein einziges Medikament für die Sofortbehandlung eines Schlaganfalls zugelassen. „Es besteht deshalb ein großer Bedarf an besser wirksamen Medikamenten“, so der Neurologe.

Immunzellen verschlimmern die Folgen

Gesucht sind vor allem neue Zielstrukturen, an denen neue Wirkstoffe andocken können. Dafür müssen jedoch zuerst die Abläufe bei einem Schlaganfall auf molekularer und zellulärer Ebene besser verstanden werden. Einen viel versprechenden Ansatz haben Kleinschnitz und seine Kollegen in jüngster Zeit entdeckt.

In ihren Experimenten hatten die Wissenschaftler zu ihrer eigenen Überraschung gesehen, dass Mäuse, denen wegen eines genetischen Defekts bestimmte Zellen des Immunsystems – sogenannte T-Zellen – fehlten, „kleinere“ Schlaganfälle bekamen als normale Artgenossen. Außerdem entwickelten sie nach dem Schlaganfall weniger neurologische Ausfallerscheinungen wie zum Beispiel Lähmungen. T-Zellen haben also einen negativen Effekt auf den Verlauf von Schlaganfällen. Dazu passt der Befund, dass sich diese Zellen bereits wenige Stunden nach einem Schlaganfall im Gehirn der Betroffenen nachweisen lassen, wo sie in das Geschehen eingreifen.

Das DFG-Projekt

Welche Unterarten von T-Zellen bei einem akuten Schlaganfall aktiv werden und welche Rolle sie dabei genau übernehmen: Das untersucht Kleinschnitz gemeinsam mit Neurologen aus Münster in einem neuen Forschungsprojekt, das die Deutsche Forschungsgemeinschaft DFG jetzt genehmigt hat.

„Die pathophysiologische Rolle regulatorischer T-Zellen beim akuten ischämischen Schlaganfall“ lautet der genaue Titel des Projekts. Es wird über drei Jahre laufen; die DFG finanziert es mit 300.000 Euro. „Unser Ziel ist es, völlig neue Eigenschaften dieser Zellen im Allgemeinen und bei einem Schlaganfall im Speziellen zu entschlüsseln“, so Kleinschnitz. Schließlich sei deren Funktion innerhalb des Krankheitsgeschehens bislang kaum untersucht. Sollte es gelingen, die molekularen Mechanismen zu identifizieren, könnten sich nach Ansicht der Wissenschaftler „völlig neue Behandlungsstrategien“ bei einem Schlaganfall eröffnen.

Das EU-Projekt Nanostroke

Um eine ganz neue Behandlungstechnik geht es in einem weiteren Forschungsprojekt, an dem Kleinschnitz seit Kurzem beteiligt ist. Sogenannte Nanobodies sollen nach einem Schlaganfall die typischen Reaktionsketten bremsen oder stoppen und auf diese Weise verhindern, dass das geschädigte Areal noch nach Tagen größer wird. Daran arbeiten im europaweiten Forschungsverbund „Nanostroke“ Wissenschaftler aus Würzburg, Hamburg, Barcelona, Bilbao, Rom und Ferrara. Die Europäische Union unterstützt das Projekt mit rund 1,2 Millionen Euro.

Gerade mal drei Nanometer – drei Millionstel eines Millimeters – sind diese Antikörper groß. Aus Sicht der Wissenschaftler verfügen sie über eine Reihe von Vorteilen im Vergleich zu konventionellen Antikörpern: Sie sind äußerst stabil, ungiftig und für die Immunabwehr nur schwer zu entdecken. Im Körper lassen sie sich schnell und gezielt an die gewünschten Orte bringen, wo sie eine hohe Affinität zur den entsprechenden Zielstrukturen an Proteinen an den Tag legen. Über die Niere werden sie schnell wieder ausgeschieden. Außerdem ist ihre Herstellung vergleichsweise günstig. Sogenannte „Warnsignale“ sind ihre potenziellen Angriffspunkte im Schlaganfall-Geschehen.

Warnsignale als Angriffspunkt

„Unser Ausgangspunkt ist die Beobachtung, dass das Gehirn nach einem Schlaganfall eine sofortige Entzündungsreaktion in Gang setzt. Wenn es gelingt, diese Reaktion zu stoppen, sollten sich die Folgeschäden deutlich verringern lassen“, erklärt Kleinschnitz.

Für diese Reaktion produzieren absterbende Zellen nach einem Schlaganfall bestimmte Moleküle, mit denen sie ihrer Umgebung signalisieren, dass Gefahr droht. „Diese Warnsignale binden an die Rezeptoren von Immunzellen und setzen damit eine Immunantwort in Gang, an deren Ende eine weitere Schädigung des betroffenen Gehirnareals steht“, sagt Kleinschnitz. Weil dieser „Warnruf“ sterbender Zellen eine Vielzahl von Signalen und Signalketten nach sich zieht, bietet er sich als „perfektes Ziel für eine Therapie“ an.

Die Rolle der Warnsignale und deren Rezeptoren besser verstehen; Nanobodies entwickeln und sowohl in Tierversuchen als auch an menschlichen Zellen testen: Das sind die Hauptziele, die sich die Wissenschaftler des Forschungsverbunds Nanostroke gesetzt haben. Auf drei Jahre ist das Projekt angelegt; die Hoffnung ist groß, dass es in dieser Zeit gelingt, eine neue Therapie zu entwickeln, die Folgeschäden nach einem Schlaganfall verhindern kann.

Kontakt

Prof. Dr. Christoph Kleinschnitz, T (0931) 201-23755, christoph.kleinschnitz@uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Vitamin-Mangel, der Kampf gegen die Antriebslosigkeit und Nahrung für die Nerven
08.12.2016 | PhytoDoc Ltd.

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie