Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoteilchen gegen den Schlaganfall

20.03.2012
Im Kampf gegen die Folgen eines Schlaganfalls gehen Wissenschaftler neue Wege. Winzige Moleküle sollen die Therapie spürbar verbessern.

Der Neurologe Christoph Kleinschnitz ist in zwei neuen Forschungsprojekten daran beteiligt.

Nach einem Schlaganfall ist schnelle Hilfe gefordert: Innerhalb der ersten vier Stunden sollte die Therapie beginnen, um die Folgeschäden für die Betroffenen möglichst gering zu halten. Mit dem Auflösen des Blutgerinnsels ist es allerdings nicht getan. Denn auch danach laufen im Gehirn Prozesse noch über Tage weiter, die die Schäden vergrößern. Neue Medikamente, die an dieser Stelle ansetzen, sind daher dringend gesucht. An der Neurologischen Klinik der Universität Würzburg arbeitet Professor Christoph Kleinschnitz in zwei neuen Forschungsprojekten daran.

„Die Ergebnisse aktueller Schlaganfallforschung in neue Medikamente umzusetzen, hat bisher nicht funktioniert“, sagt Christoph Kleinschnitz. Trotz intensiver Forschungsanstrengungen mit über 100 Therapiestudien sei bisher nur ein einziges Medikament für die Sofortbehandlung eines Schlaganfalls zugelassen. „Es besteht deshalb ein großer Bedarf an besser wirksamen Medikamenten“, so der Neurologe.

Immunzellen verschlimmern die Folgen

Gesucht sind vor allem neue Zielstrukturen, an denen neue Wirkstoffe andocken können. Dafür müssen jedoch zuerst die Abläufe bei einem Schlaganfall auf molekularer und zellulärer Ebene besser verstanden werden. Einen viel versprechenden Ansatz haben Kleinschnitz und seine Kollegen in jüngster Zeit entdeckt.

In ihren Experimenten hatten die Wissenschaftler zu ihrer eigenen Überraschung gesehen, dass Mäuse, denen wegen eines genetischen Defekts bestimmte Zellen des Immunsystems – sogenannte T-Zellen – fehlten, „kleinere“ Schlaganfälle bekamen als normale Artgenossen. Außerdem entwickelten sie nach dem Schlaganfall weniger neurologische Ausfallerscheinungen wie zum Beispiel Lähmungen. T-Zellen haben also einen negativen Effekt auf den Verlauf von Schlaganfällen. Dazu passt der Befund, dass sich diese Zellen bereits wenige Stunden nach einem Schlaganfall im Gehirn der Betroffenen nachweisen lassen, wo sie in das Geschehen eingreifen.

Das DFG-Projekt

Welche Unterarten von T-Zellen bei einem akuten Schlaganfall aktiv werden und welche Rolle sie dabei genau übernehmen: Das untersucht Kleinschnitz gemeinsam mit Neurologen aus Münster in einem neuen Forschungsprojekt, das die Deutsche Forschungsgemeinschaft DFG jetzt genehmigt hat.

„Die pathophysiologische Rolle regulatorischer T-Zellen beim akuten ischämischen Schlaganfall“ lautet der genaue Titel des Projekts. Es wird über drei Jahre laufen; die DFG finanziert es mit 300.000 Euro. „Unser Ziel ist es, völlig neue Eigenschaften dieser Zellen im Allgemeinen und bei einem Schlaganfall im Speziellen zu entschlüsseln“, so Kleinschnitz. Schließlich sei deren Funktion innerhalb des Krankheitsgeschehens bislang kaum untersucht. Sollte es gelingen, die molekularen Mechanismen zu identifizieren, könnten sich nach Ansicht der Wissenschaftler „völlig neue Behandlungsstrategien“ bei einem Schlaganfall eröffnen.

Das EU-Projekt Nanostroke

Um eine ganz neue Behandlungstechnik geht es in einem weiteren Forschungsprojekt, an dem Kleinschnitz seit Kurzem beteiligt ist. Sogenannte Nanobodies sollen nach einem Schlaganfall die typischen Reaktionsketten bremsen oder stoppen und auf diese Weise verhindern, dass das geschädigte Areal noch nach Tagen größer wird. Daran arbeiten im europaweiten Forschungsverbund „Nanostroke“ Wissenschaftler aus Würzburg, Hamburg, Barcelona, Bilbao, Rom und Ferrara. Die Europäische Union unterstützt das Projekt mit rund 1,2 Millionen Euro.

Gerade mal drei Nanometer – drei Millionstel eines Millimeters – sind diese Antikörper groß. Aus Sicht der Wissenschaftler verfügen sie über eine Reihe von Vorteilen im Vergleich zu konventionellen Antikörpern: Sie sind äußerst stabil, ungiftig und für die Immunabwehr nur schwer zu entdecken. Im Körper lassen sie sich schnell und gezielt an die gewünschten Orte bringen, wo sie eine hohe Affinität zur den entsprechenden Zielstrukturen an Proteinen an den Tag legen. Über die Niere werden sie schnell wieder ausgeschieden. Außerdem ist ihre Herstellung vergleichsweise günstig. Sogenannte „Warnsignale“ sind ihre potenziellen Angriffspunkte im Schlaganfall-Geschehen.

Warnsignale als Angriffspunkt

„Unser Ausgangspunkt ist die Beobachtung, dass das Gehirn nach einem Schlaganfall eine sofortige Entzündungsreaktion in Gang setzt. Wenn es gelingt, diese Reaktion zu stoppen, sollten sich die Folgeschäden deutlich verringern lassen“, erklärt Kleinschnitz.

Für diese Reaktion produzieren absterbende Zellen nach einem Schlaganfall bestimmte Moleküle, mit denen sie ihrer Umgebung signalisieren, dass Gefahr droht. „Diese Warnsignale binden an die Rezeptoren von Immunzellen und setzen damit eine Immunantwort in Gang, an deren Ende eine weitere Schädigung des betroffenen Gehirnareals steht“, sagt Kleinschnitz. Weil dieser „Warnruf“ sterbender Zellen eine Vielzahl von Signalen und Signalketten nach sich zieht, bietet er sich als „perfektes Ziel für eine Therapie“ an.

Die Rolle der Warnsignale und deren Rezeptoren besser verstehen; Nanobodies entwickeln und sowohl in Tierversuchen als auch an menschlichen Zellen testen: Das sind die Hauptziele, die sich die Wissenschaftler des Forschungsverbunds Nanostroke gesetzt haben. Auf drei Jahre ist das Projekt angelegt; die Hoffnung ist groß, dass es in dieser Zeit gelingt, eine neue Therapie zu entwickeln, die Folgeschäden nach einem Schlaganfall verhindern kann.

Kontakt

Prof. Dr. Christoph Kleinschnitz, T (0931) 201-23755, christoph.kleinschnitz@uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften