Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel als Waffe gegen Krebs

01.03.2013
Zielgenaue Arzneizufuhr soll Patienten schonen

Schwedische Forscher haben Nanopartikel entwickelt, die Arzneien gezielt an bestimmte Stellen im Körper bringen und gleichzeitig gut mittels Magnetresonanz-Tomografie (MRT) verfolgt werden können, also therapeutische und diagonstische Funktionalität kombinieren.

Von den daher als "theraneutisch" bezeichneten Nanopartikeln erwarten sich die Wissenschaftler eine wirksame Waffe im Kampf gegen Krebs. Das Team hofft, dass auf die Dauer praktisch zielsuchende Chemotherapien möglich werden, die direkt Krebszellen angreifen und so die Patienten schonen.

Verträglich und zielgenau

Die Forscher haben eine Methode entwickelt, bei der sich die speziellen Nanopartikel spontan aus Polymer-Bausteinen formen, was durch eine gekonnte Mischung wasseranziehender und -abweisender Komponenten gelingt. "Die Bausteine, die wir nutzen, sind biologisch abbaubar und zeigen keine Anzeichen von Toxizität", betont Eva Malmström, Professorin im Bereich Chemische Forschung und Verfahrenstechnik an der Königlichen Technischen Hochschule http://kth.se/en . Die entstehenden Partikel können nicht nur mit Arzneien gefüllt werden, sondern sind dank eines hohen Fluor-Anteils auch leicht mittels MRT im Körper aufzuspüren.

Die Forscher haben im Labor-Experiment ihre Nanopartikel mit Doxorubicin gefüllt, ein Wirkstoff, der zur Chemotherapie unter anderem bei Blasen-, Brust- und Lungenkrebs zum Einsatz kommt. Bei den Versuchen mit Zellkulturen ist es Malmström zufolge gelungen, damit zielgenau die Arznei-Nutzlast bei Brustkrebs-Zellen abliefern. Den Forschern zufolge haben sich die Nanoparikel selbst wirklich als harmlos erwiesen, waren aber in Verbindung mit dem Wirkstoff effizient im Abtöten der Krebszellen.

Vielseitiger Einsatz gegen Krebs

Das Team strebt nun eine Weiterentwicklung an, um die Nanopartikel gezielt gegen Gehirntumore, Pankreaskrebs und medikamentenresistente Formen von Brustkrebs einsetzen zu können, die eigentlich schwer mit Chemotherapie zu behandeln sind.

Durch geeignete Veränderungen im Aufbau der Nanopartikel sollte es möglich sein, für eine noch gezieltere Aufnahme durch Krebszellen zu sorgen, so der Nanomediziner Andreas Nyström vom Karolinska Institutet http://ki.se/ki/jsp/polopoly.jsp?l=en .

In Zusammenarbeit mit Forschern der Chalmers University of Technology http://chalmers.se/en hofft man nun, dass die Nanopartikel langfristig Designer-Chemotherapien ermöglichen, die wirklich Krebszellen suchen und gezielt nur dort ihre Wirkstoffe freisetzen.

Eine derart präzise Waffe wäre ein großer Vorteil für Patienten, da die eigentlich toxischen Medikamente den Rest des Körpers nicht mehr so belasten würden - eine Therapie hätte also deutlich geringere Nebenwirkungen.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.kth.se/en

Weitere Berichte zu: Arzneien Chemotherapie Krebszelle MRT Nanopartikel Wirkstoff

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Weltweit einmalig: Korrekte Diagnose der Lungentuberkulose in nur drei Tagen
16.04.2018 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics