Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Mechanismus in der Tumorentstehung aufgeklärt

21.12.2012
Wissenschaftler der Universität Leipzig haben die molekulare Erklärung gefunden, wie das Protein p53 die Teilung einer geschädigten Zelle und somit eine Tumorentstehung verhindert.

Im äußerst komplexen Zellteilungsprozess kommt dem p53-Protein eine zentrale Rolle zu. Bei geschädigten Zellen kann es die weitere Teilung stoppen und verhindert so, dass sich aus diesen Zellen eine Krebserkrankung entwickelt. Das Protein wird deshalb auch als Tumorsuppressor bezeichnet. Tatsächlich können die meisten Tumoren nur entstehen, wenn die Funktion von p53 ausgeschaltet wurde.

Seit längerem ist die Rolle von p53 bekannt, nicht aber wie es genau arbeitet. Zunächst wirkt das Protein als sogenannter Genregulator wie ein An-Aus-Schalter, der diverse Gene, die an Zellteilungsprozessen beteiligt sind, aktivieren oder hemmen kann. Wenn eine Zelle einen Schaden in der Erbinformation erleidet und sie dadurch als potentielle Tumorquelle für den gesamten Organismus gefährlich wird, vermag p53 den Schaden zu erkennen. Zum Schutz unterbindet es entweder die Zellteilung oder führt sie sogar gesteuert in den Zelltod.

Soweit seine Rolle. Die Leipziger Wissenschaftler haben jetzt geklärt, welche Mechanismen auf molekularer Ebene ablaufen, wenn p53 gleichzeitig verschiedene Gene je nach Bedarf an- oder abschaltet. Da das Protein selbst wohl nur eine Gen-aktivierende Funktion im Repertoire hat, bedient es sich eines indirekten Mechanismus. Es aktiviert ein Gen, das für Unterbrechungen im Zellteilungsprozess zuständig ist und in einer Folge von komplexen hemmenden Reaktionen die Zellteilung stoppt.

Wegen seiner entscheidenden Rolle bei der Tumorabwehr gilt p53 in der Grundlagenforschung als Schlüsselprotein und ist eins der am intensivsten bearbeiteten Eiweißmoleküle. Das nun vorliegende Ergebnis sei für die Grundlagenforschung richtungweisend, sagt Molekularonkologe Professor Kurt Engeland von der Medizinischen Fakultät der Universität Leipzig: "Bei unserer Veröffentlichung handelt sich um eine Schlüsselpublikation auf dem weiten Feld der p53-Forschung. Wir haben die vielen kleinen Bausteine der p53-abhängigen Hemmung der Zellteilung zu einem vollständigen und allgemeinen Mechanismus zusammengeführt. So können wir den kompletten Bogen von der Aktivität des Proteins hin zum Anhalten der Zellteilung schlagen und weitgehend die molekularen Zusammenhänge erklären."

Link zur Fachveröffentlichung (Landes Bioscience, doi: 10.4161/cc.22917):
http://www.landesbioscience.com/journals/cc/article/22917/
Ansprechpartner:
Prof. Dr. Kurt Engeland
Telefon: +49 341 97-25900
E-Mail: engeland@medizin.uni-leipzig.de
Internet: http://www.engeland-research.de

Carsten Heckmann | idw
Weitere Informationen:
http://www.engeland-research.de
http://www.landesbioscience.com/journals/cc/article/22917/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Weltweit einmalig: Korrekte Diagnose der Lungentuberkulose in nur drei Tagen
16.04.2018 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics