Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millionenförderung für Verbundvorhaben zur Erforschung der 3D-Geweberegeneration

20.04.2009
Am Dienstag (21.4.2009) startet an der Orthopädischen Klinik der Universität Rostock, Doberaner Straße 142, um 9.00 Uhr das interdisziplinäre Verbundvorhaben zur Erforschung von 3D-Geweberegenerationsprozessen.

Hintergrund des Vorhabens: der eigene Körper kann große Knochendefekte nicht mehr reparieren, die meist in Folge von Tumoren, Infektionen oder auch Unfällen entstehen. Weltweit werden derzeit etwa 750.000 Knochentransplantationen pro Jahr durchgeführt, das jährliche Marktvolumen dafür beträgt rund eine Milliarde Euro.

Knochendefekte können mit körpereigenen Knochentransplantaten aufgefüllt werden, beispielsweise aus der Beckenregion durch Teile des Beckenknochens. Bei einer Transplantation werden Knochenstücke an einer Stelle des Körpers entnommen und im Bereich des Defektes als Implantat befestigt. Bei einer größeren Transplantation entstehen so zwei getrennte Operationsgebiete mit den entsprechenden Risiken und Komplikationsmöglichkeiten. Zudem stehen diese Knochentransplantate nur begrenzt zur Verfügung. Im orthopädischen Bereich werden daher zunehmend Knochendefekte mit synthetischen dreidimensionalen Stützgerüsten (Implantaten) aufgefüllt. Die Einheilungsresultate von körpereigenen Knochentransplantaten konnte bislang jedoch noch von keinem synthetischen Implantatmaterial erreicht werden.

„In den zurückliegenden Jahren wurden immer mehr Biomaterialien und hoch entwickelte Kombinationen aus Co-Polymeren und Keramik konstruiert und bei orthopädischen Transplantationen eingesetzt. Diese Materialien sind jedoch nur beschränkt fähig, große Knochendefekte zu heilen. Ihnen fehlen die spezifischen Eigenschaften von Knochentransplantaten, vor allem für den Wiederaufbau des natürlichen Knochens. Um das eingesetzte Material sicher zu integrieren, muss es von knocheneigenen Zellen besiedelt bzw. bei temporären Implantaten von den Zellen resorbiert und durch körpereigene Knochensubstanz ersetzt werden. Auf dieser Basis bildet sich dann neues natürliches Gewebe, die Fachwelt spricht vom Tissue Engineering“, sagte Prorektorin für Forschung Prof. Dr. Ursula van Rienen, die auch an dem 3D-Projekt beteiligt ist. Bisher werden dafür dreidimensionale Stützgerüste verwendet, die im Inneren von körpereigenen Knochenzellen besiedelt werden sollen. Dies geschieht aber noch nicht auf zufriedenstellende Weise. Mediziner können eine stabile Integration im Empfängerknochen noch nicht gewährleisteten.

„Geweberegeneration“ heißt daher das vom Ministerium für Wirtschaft, Arbeit und Tourismus des Landes Mecklenburg-Vorpommern geförderte Verbundvorhaben, das vor kurzem seine Arbeit aufgenommen hat. Die Untersuchungen stellen erste Schritte zum Verständnis für die Besiedlung innerer Oberflächen mit großvolumigen, porösen Implantaten dar. Die Forscher erhoffen sich u.a. Erkenntnisse hinsichtlich Porengeometrie für die Entwicklung neuartiger 3D-Knochenersatzmaterialien. Ein eigens entwickeltes 3D-Stapel-Modell dient als „Zellkultur-Reaktor“ und soll makroskopische dreidimensionale Zellkulturen nachbilden. So können grundlegende Fragen zum Verhalten von Zellen in 3D-Umgebungen untersucht werden.

„Die Forscher interessiert dabei besonders, wie die Zellen mittels definierter Transportsysteme Gewebe ausbilden und dabei auf bioaktive Oberflächen reagieren“, so van Rienen.

Bis zum Ende des Jahres 2010 ermöglicht der Verbund sieben Projektpartnern in Mecklenburg-Vorpommern – Industriefirmen, universitären Arbeitsgruppen und außeruniversitären Forschungsorganisationen – Untersuchungen auf diesem Gebiet durchzuführen, Geweberegenerationsprozesse zu analysieren und neue innovative Implantatstrukturen zu entwickeln. Diese sollen dann mittelfristig nicht nur im Bereich von Knochentransplantationen, sondern auch in weiteren Organsystemen Anwendung finden. Für die Regenerationsmaterialien existiert eine große Anwendungsbreite von der einfachen Knochendefektfüllung bis hin zur patientenspezifischen Rekonstruktion großer knöcherner Defekte.

In dem Verbund arbeiten die DOT GmbH, Rostock eng mit dem Institut für Biophysik, der Orthopädischen Klinik und Poliklinik, dem Arbeitsbereich Zellbiologie im Biomedizinischen Forschungszentrum, dem Institut für Gerätesysteme und Schaltungstechnik (alle Universität Rostock), dem Institut für Polymertechnologien (IPT), Wismar und dem Leibniz-Institut für Plasmaforschung und Technologie (INP), Greifswald zusammen.

Das Projekt wird vom Ministerium für Wirtschaft, Arbeit und Tourismus des Landes Mecklenburg-Vorpommern mit rund 5,75 Millionen Euro aus EFRE-Mitteln der Europäischen Union gefördert.

Kontakt
Prof. Dr. Ursula van Rienen
Universität Rostock
Fakultät für Informatik und Elektrotechnik
Institut Allgemeine Elektrotechnik
Albert-Einstein-Str. 2
Telefon: 0381-498-7070
e-mail: ursula.van-rienen@uni-rostock.de

Dr. Ulrich Vetter | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neues Hydrogel verbessert die Wundheilung
25.04.2017 | Universität Leipzig

nachricht Konfetti im Gehirn: Steuerung wichtiger Immunzellen bei Hirnkrankheiten geklärt
24.04.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen