Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MHH-Forscher reparieren geschädigte Blutgefäße mit Nanopartikel-Therapie

28.10.2016

MHH-Wissenschaftler fördern Heilung von Gefäßinnenwänden mit mikroRNAs / Veröffentlichung in der Fachzeitschrift Circulation

Blutgefäße sind innen mit einer schützenden Zellschicht, dem Endothel, ausgekleidet. Im Laufe des Lebens nutzt sich diese Schicht ab, die Gefäßewände verdicken und verkalken. Diese Veränderungen sind häufig Ursache für Erkrankungen wie Herzinfarkt oder Schlaganfall.


Gefäße der Halsschlagader im Mausmodell.

Quelle: MHH/Sonnenschein

Forscher der Medizinischen Hochschule Hannover (MHH) haben eine neue Therapie zur Heilung derart geschädigter Gefäße entwickelt: Das Team um Professor Dr. Dr. Thomas Thum, Dr. Jan Fiedler und Dr. Dorothee Hartmann vom MHH-Institut für Molekulare und Translationale Therapiestrategien brachten bestimmte Ribonukleinsäureketten (MicroRNA-126) über winzige abbaubare Partikel in geschädigte Gefäße ein:

Die Zellen geschädigter Gefäßinnenwände erneuerten sich daraufhin deutlich schneller, das Gefäß konnte wieder repariert werden. Dies bewiesen die Wissenschaftler anhand von Versuchen im Mausmodell sowie an menschlichen Gewebeproben. „Verletzungen der Gefäßinnenwand entstehen unter anderem auch beim Einsetzen von sogenannten Stents, die eigentlich verengte Gefäße weiten sollen“, erklärt Professor Dr. Dr. Thomas Thum. „Unsere neue Therapie könnte helfen, dass sich um die Stents herum die Schutzschicht schneller ausbildet und so Nebenwirkungen wie Thrombenbildung verhindern.“

Der Clou der entwickelten Therapie sind die winzigen Lipid-Nanopartikel, die die Wissenschaftler als Transportmittel nutzen. Sie können einfach ins Blut injiziert werden, lösen sich dann in den Gefäßen auf und geben die mikroRNAs frei. „Dort regulieren die mikroRNAs wichtige Signalwege, die für die Instandhaltung der Gefäßinnenwand wichtig ist “, sagt Dr. Fiedler, der sich die Erstautorenschaft mit Dr. Dorothee Hartmann teilt. „Durch das Einbringen der mikroRNAs heilt die innere Schutzschicht schneller wieder.“

MicroRNAs sind kurze Ribonukleinsäureketten. Sie wirken zumeist auf ein ganzes Netzwerk von Genen und steuern darüber die Entwicklung und Funktion von Zellen. Das Institut für Molekulare und Translationale Therapiestrategien ist an der MHH in das Integrierte Forschungs- und Behandlungszentrum Transplantation (IFB-Tx) und in den Exzellenzcluster REBIRTH eingebunden.

Weitere Informationen erhalten Sie bei Professor Dr. Dr. Thomas Thum, MHH-Institut für Molekulare und Translationale Therapiestrategien, Telefon (0511) 532-5272, thum.thomas@mh-hannover.de.

Die Originalpublikation steht im Internet unter folgendem Link: http://circ.ahajournals.org/content/early/2016/10/24/CIRCULATIONAHA.116.022478.

Stefan Zorn | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

Gewässerforscher treffen sich in Cottbus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungsnachrichten

Alternder Stern bläst Materie von sich

21.09.2017 | Physik Astronomie

TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen

21.09.2017 | Energie und Elektrotechnik