Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinphysiker optimieren Therapie, bei der radioaktive Moleküle Tumoren abtöten

29.08.2014

Physik und Medizin Hand in Hand

Ein Forschungsprojekt, das zum Ziel hat, die individuelle Therapie von Patienten mit neuroendokrinen Tumoren durch eine optimierte Behandlungsplanung zu verbessern, wird von der Deutschen Forschungsgemeinschaft (DFG) mit 433.000 Euro gefördert.

Im Rahmen des Projektes entwickeln Medizinphysiker aus Mannheim und Ulm mathematische Modelle, mit denen sie simulieren, wie sich ein Therapeutikum im Körper eines Patienten verhalten wird. Als Basis dienen physiologische Daten, die beim Patienten individuell erhoben werden (daher: physiologisch basierte pharmakokinetische (PBPK) Modelle). Anhand der Simulation kann dann die für diesen Patienten passendste Applikation des Therapeutikums ermittelt werden.

Bei dem Gemeinschaftsprojekt der DFG forschen Wissenschaftler zweier baden-württembergischer Universitätsklinika zusammen, Professor Dr. rer. nat. Gerhard Glatting, Inhaber der Professur für Medizinische Strahlenphysik / Strahlenschutz an der Universitätsmedizin Mannheim, und Dr. biol. hum. Peter Kletting, gemeinsam mit Klinikdirektor Professor Dr. med. Ambros Beer, von der Klinik für Nuklearmedizin am Universitätsklinikum Ulm. Sie kooperieren außerdem im Rahmen des Projektes mit Medizinern vier weiterer Universitätsklinika, in Aachen, Marburg, Würzburg und München.

Neuroendokrine Tumore (NET) sind eine Gruppe seltener Tumore, die sich aus Zellen des so genannten endokrinen Systems, also des Hormonsystems, entwickeln. Eine wirkungsvolle Behandlung dieser Tumore ist die Peptid-Rezeptor-Radionuklid-Therapie. Das Prinzip dieser Therapie ist der Einsatz radioaktiv markierter Substanzen (Peptide), die spezifisch an Strukturen an der Oberfläche der Tumorzellen andocken. Durch die an sie gekoppelte Strahlung zerstören die Peptide die Zellen, an die sie binden.

Da die Zellen neuroendokriner Tumore eine hohe Dichte an Rezeptoren für das körpereigene Hormon Somatostatin aufweisen, dient dieser Rezeptor als Ziel-Struktur der Therapie. Entsprechend werden als Therapeutikum synthetisch hergestellte, radioaktiv markierte Peptide eingesetzt, die eine ähnliche Molekülstruktur wie das Hormon Somatostatin haben, so genannte Somatostatin-Analoga.

Somatostatin-Rezeptoren befinden sich jedoch auch auf manchen gesunden Zellen. Und zwar individuell in unterschiedlichem Ausmaß. Wenn sich markierte Somatostatin-Analoga dort anheften, schädigen sie auch diese Zellen, was zu unerwünschten Nebenwirkungen führt. Da sich außerdem der Stoffwechsel jedes Individuums unterscheidet, verteilt sich das Therapeutikum im Körper eines jeden Patienten unterschiedlich. Daher ist es wichtig, die Therapie sorgfältig individuell zu planen.

„Das Modell, das wir in Mannheim und Ulm gemeinsam entwickeln, wird für die Therapieplanung enorm hilfreich sein“, ist Professor Beer überzeugt. „Es legt die Grundlagen für Verbesserungen, die an verschiedenen Stellen gleichzeitig greifen.“

Ziel der auf den einzelnen Patienten abgestimmten Therapieplanung ist es, eine möglichst wirksame Tumordosis zu verabreichen, gleichzeitig aber gesunde Zellen so wenig wie möglich zu schädigen. Dafür muss die individuelle Biokinetik ermittelt werden, indem die Verteilung der radioaktiven Substanz in den Organen zu verschiedenen Zeitpunkten bestimmt wird. Das die Höhe der Dosis limitierende Organ sind die Nieren, da auch sie Somatostatin-Rezeptoren tragen und zudem einen Teil der Aktivität unspezifisch aufnehmen. Entscheidend ist daher vor allem, wie stark sich die Radioaktivität im Tumor im Verhältnis zur Niere anreichert.

In die mathematischen Modelle, die die Medizinphysiker entwickeln, gehen verschiedene Parameter ein, die Einfluss auf die Bioverteilung der Somatostatin-Analoga nehmen. Neben Körpergröße und Gewicht sind dies physiologisch messbare Größen wie etwa altersabhängige Veränderungen der Nierenfunktion oder die individuelle Metabolisierungskapazität.

„Richtig spannend wird es, wenn wir im Modell systematisch simulieren können, wie sich die Veränderung bestimmter äußerer Einflüsse auf die Verteilung der Substanz im Körper auswirkt. Denn auf Basis dieser Informationen können die Mediziner gezielt auf eine bessere Bioverteilung der Substanz beim einzelnen Patienten hinwirken“, so Professor Glatting.

„Darüber hinaus wird unser Modell auch das Messprotokoll verbessern und die Auswertung der an den Patienten erhobenen Daten optimieren“, fasst Dr. Kletting die Erwartungen der Wissenschaftler zusammen.

DFG-Projekt
Titel: Optimierung der Peptid-Rezeptor-Radionuklid-Therapie (PRRT) mit Hilfe physiologisch basierter pharmakokinetischer (PBPK) Modellierung

Optimization of peptide receptor radionuclide therapy (PRRT) using physiologically based pharmacokinetic (PBPK) modelling

Dr. Eva Maria Wellnitz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.umm.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie