Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinphysiker optimieren Therapie, bei der radioaktive Moleküle Tumoren abtöten

29.08.2014

Physik und Medizin Hand in Hand

Ein Forschungsprojekt, das zum Ziel hat, die individuelle Therapie von Patienten mit neuroendokrinen Tumoren durch eine optimierte Behandlungsplanung zu verbessern, wird von der Deutschen Forschungsgemeinschaft (DFG) mit 433.000 Euro gefördert.

Im Rahmen des Projektes entwickeln Medizinphysiker aus Mannheim und Ulm mathematische Modelle, mit denen sie simulieren, wie sich ein Therapeutikum im Körper eines Patienten verhalten wird. Als Basis dienen physiologische Daten, die beim Patienten individuell erhoben werden (daher: physiologisch basierte pharmakokinetische (PBPK) Modelle). Anhand der Simulation kann dann die für diesen Patienten passendste Applikation des Therapeutikums ermittelt werden.

Bei dem Gemeinschaftsprojekt der DFG forschen Wissenschaftler zweier baden-württembergischer Universitätsklinika zusammen, Professor Dr. rer. nat. Gerhard Glatting, Inhaber der Professur für Medizinische Strahlenphysik / Strahlenschutz an der Universitätsmedizin Mannheim, und Dr. biol. hum. Peter Kletting, gemeinsam mit Klinikdirektor Professor Dr. med. Ambros Beer, von der Klinik für Nuklearmedizin am Universitätsklinikum Ulm. Sie kooperieren außerdem im Rahmen des Projektes mit Medizinern vier weiterer Universitätsklinika, in Aachen, Marburg, Würzburg und München.

Neuroendokrine Tumore (NET) sind eine Gruppe seltener Tumore, die sich aus Zellen des so genannten endokrinen Systems, also des Hormonsystems, entwickeln. Eine wirkungsvolle Behandlung dieser Tumore ist die Peptid-Rezeptor-Radionuklid-Therapie. Das Prinzip dieser Therapie ist der Einsatz radioaktiv markierter Substanzen (Peptide), die spezifisch an Strukturen an der Oberfläche der Tumorzellen andocken. Durch die an sie gekoppelte Strahlung zerstören die Peptide die Zellen, an die sie binden.

Da die Zellen neuroendokriner Tumore eine hohe Dichte an Rezeptoren für das körpereigene Hormon Somatostatin aufweisen, dient dieser Rezeptor als Ziel-Struktur der Therapie. Entsprechend werden als Therapeutikum synthetisch hergestellte, radioaktiv markierte Peptide eingesetzt, die eine ähnliche Molekülstruktur wie das Hormon Somatostatin haben, so genannte Somatostatin-Analoga.

Somatostatin-Rezeptoren befinden sich jedoch auch auf manchen gesunden Zellen. Und zwar individuell in unterschiedlichem Ausmaß. Wenn sich markierte Somatostatin-Analoga dort anheften, schädigen sie auch diese Zellen, was zu unerwünschten Nebenwirkungen führt. Da sich außerdem der Stoffwechsel jedes Individuums unterscheidet, verteilt sich das Therapeutikum im Körper eines jeden Patienten unterschiedlich. Daher ist es wichtig, die Therapie sorgfältig individuell zu planen.

„Das Modell, das wir in Mannheim und Ulm gemeinsam entwickeln, wird für die Therapieplanung enorm hilfreich sein“, ist Professor Beer überzeugt. „Es legt die Grundlagen für Verbesserungen, die an verschiedenen Stellen gleichzeitig greifen.“

Ziel der auf den einzelnen Patienten abgestimmten Therapieplanung ist es, eine möglichst wirksame Tumordosis zu verabreichen, gleichzeitig aber gesunde Zellen so wenig wie möglich zu schädigen. Dafür muss die individuelle Biokinetik ermittelt werden, indem die Verteilung der radioaktiven Substanz in den Organen zu verschiedenen Zeitpunkten bestimmt wird. Das die Höhe der Dosis limitierende Organ sind die Nieren, da auch sie Somatostatin-Rezeptoren tragen und zudem einen Teil der Aktivität unspezifisch aufnehmen. Entscheidend ist daher vor allem, wie stark sich die Radioaktivität im Tumor im Verhältnis zur Niere anreichert.

In die mathematischen Modelle, die die Medizinphysiker entwickeln, gehen verschiedene Parameter ein, die Einfluss auf die Bioverteilung der Somatostatin-Analoga nehmen. Neben Körpergröße und Gewicht sind dies physiologisch messbare Größen wie etwa altersabhängige Veränderungen der Nierenfunktion oder die individuelle Metabolisierungskapazität.

„Richtig spannend wird es, wenn wir im Modell systematisch simulieren können, wie sich die Veränderung bestimmter äußerer Einflüsse auf die Verteilung der Substanz im Körper auswirkt. Denn auf Basis dieser Informationen können die Mediziner gezielt auf eine bessere Bioverteilung der Substanz beim einzelnen Patienten hinwirken“, so Professor Glatting.

„Darüber hinaus wird unser Modell auch das Messprotokoll verbessern und die Auswertung der an den Patienten erhobenen Daten optimieren“, fasst Dr. Kletting die Erwartungen der Wissenschaftler zusammen.

DFG-Projekt
Titel: Optimierung der Peptid-Rezeptor-Radionuklid-Therapie (PRRT) mit Hilfe physiologisch basierter pharmakokinetischer (PBPK) Modellierung

Optimization of peptide receptor radionuclide therapy (PRRT) using physiologically based pharmacokinetic (PBPK) modelling

Dr. Eva Maria Wellnitz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.umm.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Aromatherapie bei COPD
12.05.2015 | Airnergy AG

nachricht Chronische Wunden können heilen
16.10.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz